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Abstract
We give improved upper and lower bounds for the connective constants of
self-avoiding walks on a class of lattices, including the Archimedean and
Laves lattices. The lower bounds are obtained by using Kesten’s method
of irreducible bridges, with an appropriate generalization for weakly regular
lattices. The upper bounds are obtained as the largest eigenvalue of a certain
transfer matrix. The obtained bounds show that, in the studied class of lattices,
the connective constant is increasing in the average degree of the lattice. We
also discuss an alternative measure of average degree.

PACS numbers: 05.50.+q, 05.10.−a, 02.10.Ox

1. Introduction

Self-avoiding walks on lattices is a classical combinatorial problem in statistical physics; see
[15] for a survey.

In this work we study the connective constants of self-avoiding walks on a class of lattices,
the ALB lattices, containing the Archimedean lattices, their duals, the Laves lattices, and the
Bow-tie lattice and its dual. We give upper and lower bounds for the connective constants on
these lattices, improving previous bounds or providing the first bounds in most cases. Bounds
for the hexagonal lattice were treated separately by Alm and Parviainen [3]. Recently, good
lower bounds were obtained by Jensen [9] for several lattices. See table 1 for a summary of
the best known bounds.

1.1. Self-avoiding walks

A walk of length n on a lattice is an alternating sequence of vertices and edges
{v0, e1, v1, e2, . . . , en, vn} such that the edge ei connects the vertices vi−1 and vi . The walk is
self-avoiding if all vertices v0, v1, . . . , vn are distinct.
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Table 1. Summary of lower and upper bounds for the ALB lattices.

Lattice Degree q̃ Lower Estimate Upper

D(3.122) 6 8.20 5.377 158 5.595 5.734 24 [5]

D(4.6.12) 6 6.82 4.463 058 4.624 4.787 227
D(4.82) 6 6.47 4.304 718 4.442 4.565 362

(36) 6 6 4.118 935 [9] 4.150 797 [10] 4.251 419

Bow-tie 5 5.12 3.357 574 3.445 5 3.525 448
(32.4.3.4) 5 5 3.285 284 3.374 3.451 433
(33.42) 5 5 3.266 402 3.350 3.425 364
(34.6) 5 5 3.206 403 3.293 3.369 117

D(3.6.3.6) 4 4.24 2.704 239 2.761 2.817 739
D(3.4.6.4) 4 4.24 2.693 424 2.763 2.828 174

(44) 4 4 2.625 622 [9] 2.638 159 [7] 2.679 193 [18]

(3.4.6.4) 4 4 2.511 254 2.564 2.610 835
(3.6.3.6) 4 4 2.548 497 [9] 2.560 577 [9] 2.590 305 [5]

D(34.6) 10/3 3.54 2.154 816 2.193 2.235 067
D(33.42) 10/3 3.41 2.112 899 2.152 2.186 720
D(32.4.3.4) 10/3 3.37 2.092 579 2.132 2.168 320
D(Bow-tie) 10/3 3.37 2.076 706 2.111 2.145 304

(63) 3 3 1.841 925 [9] 1.847 759 [16] 1.868 832 [3]

(4.82) 3 3 1.804 596 [9] 1.808 830 [12] 1.829 254
(4.6.12) 3 3 1.763 766 1.787 1 1.809 064

(3.122) 3 3 1.708 758 [9] 1.711 041 [12] 1.719 254 [3]

For a vertex-transitive graph, where all vertices are equivalent, let f (n) denote the number
of self-avoiding walks, starting at a fixed vertex.

Among general graphs, we will only consider weakly regular graphs with a finite number,
K, of vertex classes. Two vertices belong to the same vertex class if they have the same
number of self-avoiding walks of all lengths. For these graphs, let fi(n) denote the number of
self-avoiding walks, starting at a fixed vertex in vertex class i, i = 1, . . . , K.

Hammersley [6] proved that, for a class of lattices called crystals containing all lattices
studied in this paper, there exists a constant µ, called the connective constant1 of the lattice,
such that

lim
n→∞ f

1/n

i (n) = µ, for all i = 1, . . . , K.

From the proof of this, it also follows that

µ � max
1�i�K

f
1/n

i (n), for all n,

which is the basis for all upper bounds for connective constants.

1 To be precise, Hammersley defined the connective constant as κ = log µ.
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Figure 1. The Archimedean lattices.

The connective constant is unknown for all non-trivial lattices, except the hexagonal,

where Nienhuis [16] has presented strong evidence that µHEX =
√

2 +
√

2 ≈ 1.847 759.
Since Jensen and Guttmann [12] have given a functional relation, (2), between the connective
constant of the (3.122) lattice, see section 2 for a description of the lattice, and µHEX, Nienhuis’
result also gives the value for µ(3.122) ≈ 1.711 041.

2. The ALB lattices

A regular tiling is a tiling of the plane which consists entirely of regular polygons. A vertex-
transitive graph of such a regular tiling is called an Archimedean lattice. There are 11 such
graphs, shown in figure 1. They are denoted according to a notation given in Grünbaum and
Shephard [4].

When the tiling consists of only one type of regular polygon, the corresponding lattice is
also edge transitive. Three of the Archimedean lattices are of this type, based on triangles,
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D(34.6) D(4.82) D(33.42) D(32.4.3.4)

D(3.4.6.4) D(3.122) D(4.6.12) D(3.6.3.6)

Figure 2. The Laves lattices.

Bow-tie D(Bow-tie)

Figure 3. The Bow-tie lattice and its dual.

(36), squares, (44), or hexagons, (63). These lattices are often referred to as regular lattices.
The remaining eight Archimedean lattices are semi-regular based on tilings with more than
one type of regular polygons.

Whether a lattice is edge transitive or not will be of importance when studying both upper
and lower bounds for the connective constants.

The dual of a graph G will be denoted D(G). The square lattice (44) is self-dual; the
triangular (36) and hexagonal (63) lattices are each other’s duals. The duals of the eight
remaining, semi-regular, Archimedean lattices constitute the class of Laves lattices, in which
there are more than one vertex class. They are shown in figure 2.

The Laves lattices serve well as test graphs when studying how well average degree
explains the connectivity of the lattice, e.g. in terms of connective constants. To get a slightly
richer class, we will also include the Bow-tie lattice and its dual, see figure 3, which have
similar properties to the Laves lattices.
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The class of Archimedean lattices, Laves lattices, the Bow-tie lattice and its dual will be
called the ALB lattices. All lattices in this class are weakly regular in the sense that they have
a finite number of vertex classes under translation.

3. Lower bounds

In [13], Kesten presents a method of obtaining lower bounds for the connective constant, based
on the so-called irreducible bridges. The method was presented for the square lattice (and its
higher-dimensional analogues), but works equally well for the triangular lattice and, with a
slight modification, also for the hexagonal lattice.

First, in section 3.1, we give a brief description of Kesten’s original method and then, in
section 3.2, we extend it to the case of weakly regular lattices.

3.1. Kesten’s method for regular lattices

Given a fixed embedding of the lattice in the plane, let the coordinates for a vertex v be denoted
by (v(x), v(y)). A bridge of length n is a self-avoiding walk such that

v0(x) < vi(x) � vn(x), for i = 1, . . . , n − 1.

The idea behind this definition is that joining two bridges always produces a new bridge.
Denote the number of bridges of length n by bn, and the generating function for bridges

by (b0 = 1)

B(t) =
∞∑

n=0

bnt
n.

An irreducible bridge is a bridge that cannot be decomposed into two bridges. Denote the
number of irreducible bridges of length n by an, and the generating function for irreducible
bridges by (a0 = 0)

A(t) =
∞∑

n=1

ant
n.

As an � 0 and bn � 0 for all n, both A(t) and B(t) are increasing in t > 0.
Kesten proved that the connective constants for bridges and irreducible bridges are the

same as for self-avoiding walks,

lim
n→∞ b1/n

n = lim
n→∞ a1/n

n = lim
n→∞ f 1/n(n) = µ.

Further, A(t) and B(t) are related by

B(t) = 1

1 − A(t)
,

so that the radius of convergence of B(t) is given by

1

µ
= sup{t : A(t) < 1}.

Thus, A(t0) > 1 implies 1/µ < t0, or µ > 1/t0. Further, with

AN(t) =
N∑

n=1

ant
n,

we obviously have AN(t) � A(t) for all N, so that AN(t0) > 1 implies A(t0) > 1 and
µ > 1/t0, which provides a practical method of obtaining lower bounds for µ.
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3.2. A generalization of Kesten’s method to weakly regular lattices

Consider a fixed embedding of the lattice in the plane and define bridges and irreducible
bridges as above. In order to be able to join two bridges into one longer bridge, we need to
keep track of the vertex classes of the starting and ending vertices of the bridges.

Define a bridge of class (i, j) as a bridge that starts in a vertex of class i and ends in a
vertex of class j . Then, a bridge of length m of class (i, j) can be joined with a bridge of
length n of class (j, k) to form a bridge of length n + m of class (i, k).

Remark 1. The introduction of a coordinate system may have the effect that we have to
introduce more vertex classes than above. Two nodes are equivalent if they can be mapped on
each other by a translation or by vertical reflection, preserving the lattice. See section 3.3 for
more details.

Let bij (n) be the number of n-step bridges of class (i, j) and aij (n) be the number of
n-step irreducible bridges of class (i, j), for n � 1. Further, let aij (0) = 0 for all i and j and

bij (0) =
{

1 if i = j ,

0 if i �= j .

Then, as every bridge can be partitioned into an irreducible bridge and a bridge (possibly
empty),

bij (n) = aij (n) +
n−1∑
k=1

K∑
r=1

air (k) · brj (n − k) =
n∑

k=1

K∑
r=1

air (k) · brj (n − k). (1)

Further, introduce the generating functions

Bij (t) =
∞∑

n=0

bij (n)tn and Aij (t) =
∞∑

n=1

aij (n)tn.

Then, by (1)

Bij (t) = bij (0) +
∞∑

n=1

n∑
k=1

K∑
r=1

air (k)brj (n − k)tn

= bij (0) +
K∑

r=1

∞∑
k=1

air (k)tk
∞∑

n=k

brj (n − k)tn−k

= bij (0) +
K∑

r=1

Air(t)Brj (t),

so that, with the matrix notation

B(t) = (Bij (t))K×K and A(t) = (Aij (t))K×K,

we have

B(t) = I + A(t)B(t),

or

B(t) = (I − A(t))−1 = I +
∞∑

k=1

Ak(t),

which is well defined as long as the largest eigenvalue, λ1(A(t)), is less than 1.
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Theorem 1. For a weakly regular lattice,

µ � 1

t0
,

where t0 = sup{t : λ1(A(t)) < 1}, and A(t) is the matrix generating function for irreducible
bridges on the lattice.

For practical computations, we usually use a truncated version, AN(t), of A(t), only
considering bridges of length �N . Then, component-wise, 0 � AN(t) � A(t), for all t > 0,
so that t0 < t1, where t1 = sup{t : λ1(AN(t)) < 1}. This gives the following useful result,
which will be used to get lower bounds for µ on weakly regular lattices.

Corollary 1. For a weakly regular lattice,

µ � 1

t1
,

where t1 = sup{t : λ1(AN(t)) < 1}, and AN(t) is the truncated matrix generating function
for irreducible bridges on the lattice.

Remark 2. It is possible to obtain lower bounds for lattices with multiple vertex classes
without using the matrix method described above. Consider the generating function

Aii(t) =
∞∑

k=1

aii(n)tn,

and let ti = sup{t : Aii(t) < 1}. Then, µ � 1/ti, for all i. As above, we can also use
truncated versions of the generating functions, but we will get poorer bounds than by using
the corollary. As an example, counting irreducible bridges of length at most 4 on the Bow-tie
lattice, with two vertex classes, see figure 7, gives

A11(t) = 4t4, A12(t) = 2t,

A21(t) = 2t + 4t2 + 4t3 + 4t4, A22(t) = 4t4.

The simplified method gives a lower bound µ � 1/t , where 4t4 = 1, i.e. µ �
√

2 ≈ 1.4142,
whereas corollary 1 gives µ � 2.9662.

3.3. Lattice representation

When applying the method, the results may depend on which representation of the lattice is
used. In order to simplify the computations, we have chosen to use representations where the
nodes all have integer coordinates. The same representation was used in the computations
leading to upper bounds, but that method does not depend on which representation we choose.

As an example, the (33.42) lattice, see figure 1, was represented as in figure 4 (left).
When applying Kesten’s method we need to treat this semi-regular lattice as having two node
classes, marked 1 and 2 in the figure. If we are only interested in the number of self-avoiding
walks, all vertices are equivalent. The dual of the (33.42) lattice, figure 4 (right), has three
node classes, denoted 1, 2 and 3 in the figure, but in practice only two vertex classes because
of vertical symmetry.

Representations for the remaining lattices with degree 5: (32.4.3.4), (34.6) and Bow-
tie (with average degree 5), and their duals, all having average degree 10/3, are given in
figures 5–7.

The lattices with degree 3: (3.122), (4.6.12), (4.82), (63), and their duals, all having
average degree 6, are shown in figures 8–11. Note that the hexagonal lattice (63), see
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Figure 4. Representation of the (33.42) lattice and its dual.
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Figure 5. Representation of the (32.4.3.4) lattice and its dual.
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Figure 6. Representation of the (34.6) lattice and its dual.

figure 11, although regular, has two vertex classes. Nevertheless, it can be handled with
Kesten’s original method as all bridges must start (and end) in vertex class 1.
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Figure 7. Representation of the Bow-tie lattice and its dual.
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Figure 8. Representation of the (3.122) lattice and its dual.
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Figure 9. Representation of the (4.6.12) lattice and its dual.

There are five lattices with average degree 4. For the square lattice we use the natural
representation. The Kagomé lattice (3.6.3.6) and its dual, also called the Dice lattice, are
shown in figure 12. The Ruby lattice (3.4.6.4) and its dual are shown in figure 13.
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Figure 10. Representation of the (4.82) lattice and its dual.
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Figure 11. Representation of the hexagonal, (63), lattice and its dual, the triangular lattice, (36).
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Figure 12. Representation of the (3.6.3.6) lattice and its dual.

Remark 3. We do not claim that the chosen representations are the optimal ones for producing
lower bounds. For example, the Kagomé lattice (3.6.3.6) in figure 12 or the (3.122) lattice
of figure 8 can probably be represented in a more effective way, but we have chosen not to
investigate this further as there are better lower bounds available for these lattices, [9].
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Figure 13. Representation of the (3.4.6.4) lattice and its dual.

Remark 4. When applying corollary 1, the dimension of the matrix AN(t) may be reduced by
removing rows and columns corresponding to vertex classes that cannot be the starting points
of bridges, like vertex class 5 in the D(32.4.3.4) lattice in figure 5. It is also possible to use
vertical symmetry to reduce the dimension. For example, in the (4.82) lattice in figure 10, the
vertex classes 1 and 4, and the vertex classes 2 and 3, are equivalent, reducing the dimension
of the matrix from 4 to 2. An even more significant reduction is obtained for the (4.6.12)

lattice, see figure 9, where vertical symmetry reduces the number of vertex classes from
12 to 6.

4. Upper bounds

Improved upper bounds are obtained by the method of Alm [1]. Let

F(m) =
K∑

i=1

fi(m)

be the total number of self-avoiding walks of length m and let γi(m), i = 1, . . . , F (m), denote
these walks. Further, let gij (m, n) be the number of n-stepped self-avoiding walks that start
with γi(m) and end with (a translation of) γj (m).

Theorem 2 (Alm 1993). With

G(m, n) = (gij (m, n))F(m)×F(m),

µ � (λ1(G(m, n)))1/(n−m),

where λ1 denotes the largest eigenvalue.

Remark 5. When using this method, available computer memory limits the choice of m,
whereas computing time limits n.

Remark 6. It is possible to reduce the order of G(m, n) by using more symmetry (reflection
and rotation). This has, to some extent, been used in the computations.
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5. Results

The methods of the previous sections, theorem 2 for upper bounds and corollary 1 for lower
bounds, were used to get bounds for all ALB lattices, improving existing bounds for most of
the lattices. The computations extend previous enumerations on all lattices, except the square,
triangular and hexagonal. Estimated values were obtained using Domb and Sykes’ alpha and
Neville tables; see [15], which give a precision of three to four decimal places for these series.

In the following subsections we will group the lattices according to their average degree.
A summary of the best available bounds is given in table 1.

The results are discussed in more detail in the following section.

5.1. Degree 3 lattices

There are four ALB lattices with degree 3: (3.122), (4.6.12), (4.82) and the hexagonal (63),
all Archimedean; see figures 1 and 8–11.

5.1.1. The (3.122) lattice. This semi-regular lattice, also known as the Star or extended
Kagomé lattice, has six vertex classes when computing lower bounds; see figure 8.

The matrix G(18, 48), with dimension 23 976, was computed, giving the upper bound
µ < 1.729 220. This does not improve the bound µ < 1.719 254 obtained in [3] using a
relation between µ(3.122) and µHEX given by Jensen and Guttmann [12],

1

µHEX
= 1

µ(3.122)

+
1

µ3
(3.122)

. (2)

This relation was also used by Jensen [9] to obtain the lower bound µ > 1.708 758
(erroneously given as µ > 1.708 553 in the paper). Irreducible bridges of length N � 53 only
gives µ > 1.691 580.

The values of f (n) for n � 51 are given in table 2. This extends the enumeration (n � 26)

given in [5].

Relation (2) and Nienhuis’ supposed value for µHEX =
√

2 +
√

2, determines µ(3.122) ≈
1.711 041, [12].

5.1.2. The (4.6.12) lattice. This semi-regular lattice, sometimes referred to as the Cross
lattice, has six vertex classes when computing lower bounds; see figure 9 and note that by
vertical symmetry we need only consider vertex classes 1–6.

The matrix G(18, 39), with dimension 111 702, gives the bound µ < 1.809 064.
Using irreducible bridges of length N � 48 gives the lower bound µ > 1.763 766.
Enumeration of self-avoiding walks up to length 47, see table 2, was used to estimate

µ ≈ 1.7871. We are not aware of any previously published enumeration of self-avoiding
walks on this lattice, nor any bounds for or estimate of the connective constant.

5.1.3. The (4.82) lattice. This semi-regular lattice, also known as the Bathroom tiling or
Briarwood lattice, has two vertex classes when computing lower bounds; see figure 10 and
note that by vertical symmetry we need only consider vertex classes 1 and 2.

The matrix G(19, 42), with dimension 125 094, gives the bound µ < 1.829 254,
improving the bound in [1].

Using irreducible bridges of length N � 49 gives the lower bound µ > 1.785 641. This
was recently substantially improved by Jensen [9] to µ > 1.804 596.



Bounds for connective constants 2067

Table 2. Number of self-avoiding walks on the degree 3 lattices.

n (3.122) (4.6.12) (4.82)

1 3 3 3
2 6 6 6
3 10 12 12
4 18 22 22
5 32 42 42
6 56 78 80
7 100 146 152
8 176 264 284
9 312 490 536

10 552 894 988
11 976 1646 1848
12 1724 3012 3412
13 3018 5528 6352
14 5240 10 086 11 724
15 9078 18 476 21 718
16 15 780 33 648 39 952
17 27 502 61 472 73 808
18 47 952 111 702 135 668
19 83 602 203 552 250 188
20 145 700 368 872 459 172
21 253 666 670 538 844 888
22 440 696 1 213 118 1 548 608
23 763 624 2 201 208 2 845 186
24 1 321 176 3 980 380 5 211 548
25 2 286 260 7 214 200 9 563 768
26 3 959 928 13 044 916 17 501 272
27 6 861 692 23 627 064 32 079 524
28 11 886 772 42 714 902 58 660 712
29 20 581 946 77 316 682 107 425 356
30 35 619 908 139 695 536 196 320 596
31 61 607 416 252 664 214 359 232 144
32 106 477 892 456 138 008 656 099 656
33 183 923 972 824 332 804 1 199 676 412
34 317 633 956 1 487 051 098 2 189 995 764
35 548 571 760 2 685 425 808 4 001 911 076
36 947 415 036 4 841 707 570 7 302 060 948
37 1635 944 498 8 738 393 638 13 335 944 432
38 2824 074 824 15 749 389 392 24 322 985 128
39 4873 843 408 28 411 849 334 44 399 312 952
40 8 409 396 972 51 193 846 536 80 948 266 996
41 14 505 967 988 92 317 763 708 147 696 743 656
42 25 015 863 884 166 297 813 974 269 184 560 468
43 43 131 830 640 299 772 356 362 490 946 387 696
44 74 358 090 656 539 832 416 602 894 489 206 772
45 128 179 084 208 972 751 189 854 1 630 785 451 464
46 220 928 082 152 1751 174 705 274 2970 377 146 028
47 380 728 998 492 3154 402 628 922 5413 585 017 968
48 656 014 489 036
49 1130 187 139 044
50 1946 827 025 444
51 3353 058 928 428



2068 S E Alm

Computation of f (n) up to length 47, see table 2, extends the previous enumeration
(n � 29) of [1].

The estimate µ ≈ 1.809 agrees with the estimate µ ≈ 1.808 830 given in [12].

5.1.4. The hexagonal lattice. This lattice was treated separately in [3], giving the upper
bound µ < 1.868 832.

The lower bound of that paper, µ > 1.833 009, was recently improved by Jensen [9] to
µ > 1.841 925.

Enumeration of self-avoiding walks up to length 100 is given by Jensen [11].

The supposed exact value, µ =
√

2 +
√

2 ≈ 1.847 759, of Nienhuis [16] is supported by
all extrapolations.

5.2. Lattices with degree 10/3

There are four ALB lattices with average degree 10/3, all duals of lattices with degree 5 and
all having two or three vertex classes: D(Bow-tie), D(32.4.3.4),D(33.42) and D(34.6), see
figures 2–7.

To our knowledge, self-avoiding walks on these lattices have not been studied before.

5.2.1. The dual Bow-tie lattice. This lattice has two vertex classes, one with degree 4 and
one with degree 3; see figure 7.

The matrix G(11, 33), with dimension 18 742, gives the bound µ < 2.145 304.
Using irreducible bridges of length N � 38 gives the lower bound µ > 2.076 706.
The values of f1(n) and f2(n) for n � 38 are given in table 3. Extrapolation of these

series gave the estimate µ ≈ 2.111.

5.2.2. The dual (32.4.3.4) lattice. This lattice has two vertex classes, one with degree 4 and
one with degree 3; see figure 5.

The matrix G(10, 32), with dimension 31 736, gives the bound µ < 2.168 320.
Using irreducible bridges of length N � 36 gives the lower bound µ > 2.092 579.
The values of f1(n) and f2(n) for n � 36 are given in table 4. Extrapolation of these

series gave the estimate µ ≈ 2.132.

5.2.3. The dual (33.42) lattice. This lattice, also known as the Pentagonal lattice, has two
vertex classes, one with degree 4 and one with degree 3; see figure 4.

The matrix G(11, 33), with dimension 20 743, gives the bound µ < 2.186 720.
Using irreducible bridges of length N � 36 gives the lower bound µ > 2.112 899.
The values of f1(n) and f2(n) for n � 36 are given in table 4. Extrapolation of these

series gave the estimate µ ≈ 2.152.

5.2.4. The dual (34.6) lattice. This lattice has three vertex classes, one with degree 6 and
two with degree 3; see figure 6.

The matrix G(9, 30), with dimension 29 784, gives the bound µ < 2.235 067.
Using irreducible bridges of length N � 35 gives the lower bound µ > 2.154 816.
The values of f1(n), f2(n) and f3(n) for n � 34 are given in table 5. Extrapolation of

these series gave the estimate µ ≈ 2.155.
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Table 3. Number of self-avoiding walks on the dual Bow-tie lattice.

n f1(n) f2(n)

1 4 3
2 8 8
3 20 18
4 44 40
5 96 92
6 220 200
7 476 452
8 1048 974
9 2296 2156

10 4952 4676
11 10 836 10 184
12 23 368 22 034
13 50 688 47 868
14 109 424 103 070
15 235 944 223 300
16 508 280 479 572
17 1094 236 1035 398
18 2349 948 2221 468
19 5052 304 4781 968
20 10 832 340 10 247 458
21 23 246 096 22 018 346
22 49 790 232 47 122 356
23 106 677 536 101 099 276
24 228 257 516 216 139 174
25 488 498 740 463 099 208
26 1044 174 832 989 246 448
27 2232 566 700 2117 080 154
28 4768 148 288 4519 080 698
29 10 186 068 856 9661 885 548
30 21 739 381 308 20 610 366 890
31 46 405 768 288 44 028 642 894
32 98 978 466 556 93 865 037 902
33 211 144 331 144 200 370 472 494
34 450 092 221 988 426 949 915 216
35 959 595 749 204 910 800 515 376
36 2044 514 304 536 1939 831 638 482
37 4356 629 794 320 4135 796 238 488
38 9278 021 270 984 8804 737 338 186

5.3. Lattices with degree 4

There are five ALB lattices with degree 4, three Archimedean: the Kagomé (3.6.3.6), the
Ruby (3.4.6.4) and the square (44) lattices, and two Laves lattices: the dual Ruby lattice
D(3.4.6.4) and the dual Kagomé, or Dice, lattice, D(3.6.3.6), see figures 1, 2, 12, 13. Self-
avoiding walks on the square lattice have obtained much attention, and the Kagomé lattice
has also been studied, but we are not aware of any previous work on the remaining three
lattices.

5.3.1. The Kagomé (3.6.3.6) lattice. This lattice is semi-regular with two vertex classes when
computing lower bounds; see figure 12 and note that vertices denoted 1 and 3 are equivalent.
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Table 4. Number of self-avoiding walks on the D(32.4.3.4) and D(33.42) lattices.

D(32.4.3.4) D(33.42)

n f1(n) f2(n) f1(n) f2(n)

1 4 3 4 3
2 8 8 10 7
3 20 18 22 18
4 48 42 50 44
5 100 96 114 96
6 232 212 262 218
7 524 478 590 500
8 1124 1064 1302 1114
9 2516 2332 2898 2500

10 5552 5158 6450 5570
11 12 068 11 350 14 254 12 298
12 26 564 24 790 31 474 27 264
13 58 040 54 292 69 402 60 286
14 126 212 118 616 152 730 132 712
15 275 512 258 142 335 818 292 184
16 599 248 562 308 737 254 642 518
17 1300 932 1223 086 1616 318 1410 076
18 2826 440 2654 672 3540 838 3092 262
19 6129 280 5761 760 7750 150 6774 934
20 13 278 992 12 493 394 16 948 422 14 826 488
21 28 764 800 27 057 900 37 038 042 32 424 722
22 62 244 248 58 580 814 80 888 886 70 863 618
23 134 605 624 126 739 248 176 546 146 154 753 446
24 290 981 560 273 998 026 385 107 986 337 755 836
25 628 605 512 592 110 592 839 617 690 736 776 920
26 1357 322 032 1278 871 048 1829 652 318 1606 306 942
27 2929 662 720 2760 749 638 3985 289 798 3500 340 982
28 6320 447 548 5957 414 590 8677 029 278 7624 366 236
29 13 630 470 352 12 850 090 786 18 884 819 642 16 600 123 562
30 29 384 715 412 27 706 609 062 41 086 175 578 36 128 343 180
31 63 324 897 888 59 719 052 078 89 357 421 374 78 601 218 692
32 136 423 406 380 128 675 134 890 194 279 098 870 170 946 755 816
33 293 814 174 776 277 164 772 498 422 269 358 002 371 665 076 262
34 632 599 393 128 596 836 230 624 917 548 489 474 807 815 755 648
35 1361 657 136 640 1284 842 203 420 1993 202 223 970 1755 289 052 740
36 2930 188 540 020 2765 216 402 546 4328 750 731 262 3813 002 741 096

The matrix G(11, 29), with dimension 21 352, gives the bound µ < 2.605 069. This was
improved to µ < 2.590 305 in [5], by using the fact that the Kagomé lattice is the covering
lattice of the hexagonal lattice.

Using irreducible bridges of length N � 31 gives the lower bound µ > 2.509 674. This
was improved to µ > 2.548 497 in [9].

The values of f (n) for n � 31 are given in table 6. This extends the enumeration in [14]
and also corrects an error in their value of f (28). Extrapolation gave the estimate µ ≈ 2.561,
agreeing with the estimate 2.560 577 by Jensen [9].

5.3.2. The Ruby (3.4.6.4) lattice. This lattice is semi-regular with three vertex classes when
computing lower bounds; see figure 13 and note that, by vertical symmetry, we need only
consider the odd numbered vertices.
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Table 5. Number of self-avoiding walks on the D(34.6) lattice.

n f1(n) f2(n) f3(n)

1 6 3 3
2 12 9 6
3 24 21 21
4 66 48 51
5 156 117 96
6 336 273 249
7 774 618 621
8 1812 1428 1311
9 4092 3283 2997

10 9078 7420 7107
11 20 556 16 772 15 903
12 46 758 37 949 35 400
13 104 226 85 556 80 508
14 232 314 192 062 182 148
15 523 416 430 654 406 803
16 1171 686 966 247 909 324
17 2606 208 2162 715 2043 768
18 5822 382 4830 079 4575 438
19 13 015 062 10 791 648 10 192 530
20 28 972 326 24 093 622 22 755 822
21 64 467 552 53 698 772 50 843 091
22 143 613 426 119 627 969 113 223 366
23 319 518 462 266 423 930 251 935 404
24 709 905 276 592 793 022 561 093 111
25 1577 405 796 1318 077 102 1248 305 718
26 3504 521 148 2929 772 569 2773 646 481
27 7779 397 464 6509 025 111 6162 825 489
28 17 260 601 976 14 453 142 573 13 690 705 833
29 38 293 410 108 32 080 257 806 30 390 253 506
30 84 923 674 728 71 181 236 128 67 428 989 712
31 188 244 286 188 157 879 264 103 149 585 647 773
32 417 163 852 824 350 046 010 436 331 719 188 994
33 924 267 479 580 775 878 576 160 735 287 624 418
34 2047 120 032 414 1719 234 908 660 1629 405 631 977

The matrix G(10, 28), with dimension 17 113, gives the bound µ < 2.610 835.
Using irreducible bridges of length N � 30 gives the lower bound µ > 2.511 254.
The values of f (n) for n � 30 are given in table 6. Extrapolation gave the estimate

µ ≈ 2.564.
To our knowledge, these are the first results on self-avoiding walks for the Ruby lattice.

5.3.3. The square (44) lattice. This regular lattice is by far the most studied of the ALB
lattices in connection with self-avoiding walks.

The best upper bound, µ < 2.679 193, was given by Pönitz and Tittman [18].
The best lower bound, µ > 2.625 622, was obtained by Jensen [9], by computing

irreducible bridges of length N � 72.
Enumeration up to length 71 was produced by Jensen [8], who in [7] gave the estimate

µ ≈ 2.638 159 based on self-avoiding polygons.
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Table 6. Number of self-avoiding walks on the Kagomé (3.6.3.6), and Ruby (3.4.6.4), lattices.

n Kagomé Ruby

1 4 4
2 12 12
3 32 34
4 88 94
5 240 252
6 652 680
7 1744 1826
8 4616 4858
9 12 208 12 928

10 32 328 34 226
11 85 408 90 298
12 224 640 237 710
13 589 024 624 318
14 1542 944 1637 370
15 4039 256 4289 652
16 10 560 552 11 226 044
17 27 567 488 29 347 138
18 71 878 068 76 636 640
19 187 262 944 199 927 120
20 487 526 944 521 101 204
21 1268 269 160 1357 191 780
22 3296 832 292 3532 445 834
23 8564 411 120 9188 678 794
24 22 235 825 104 23 888 535 986
25 57 701 041 072 62 072 114 752
26 149 657 337 872 161 207 840 658
27 387 978 891 176 418 478 353 298
28 1005 378 745 536 1085 857 527 206
29 2604 222 063 144 2816 439 313 010
30 6743 181 213 712 7302 441 586 124
31 17 454 178 002 264

5.3.4. The dual Ruby lattice D(3.4.6.4). This lattice has three vertex classes, one with
degree 6, one with degree 4 and one with degree 3. When computing lower bounds, we need
to consider the four vertex classes 1, 2, 3 and 5 of figure 13.

The matrix G(7, 24), with dimension 18 876, gives the bound µ < 2.828 174.
Using irreducible bridges of length N � 28 gives the lower bound µ > 2.693 424.
The values of f1(n), f2(n) and f3(n) for n � 28 are given in table 7. Extrapolation of

these series gave the estimate µ ≈ 2.763.

5.3.5. The Dice lattice D(3.6.3.6). This lattice, the dual of the Kagomé lattice, has two
vertex classes, one with degree 6 and one with degree 3. When computing lower bounds,
we need only consider the two vertex classes denoted 1 and 2 of figure 12 due to vertical
symmetry.

The matrix G(9, 25), with dimension 24 224, gives the bound µ < 2.817 739.
Using irreducible bridges of length N � 30 gives the lower bound µ > 2.704 239.
The values of f1(n) and f2(n) for n � 29 are given in table 8. Extrapolation of these

series gave the estimate µ ≈ 2.761.
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Table 7. Number of self-avoiding walks on the dual Ruby, D(3.4.6.4), lattice.

n f1(n) f2(n) f3(n)

1 6 4 3
2 18 14 9
3 54 42 36
4 150 130 102
5 474 370 318
6 1302 1130 882
7 3954 3146 2742
8 10 734 9490 7512
9 32 370 26 006 22 824

10 87 426 77 926 61 962
11 261 894 211 726 186 642
12 704 454 631 614 504 030
13 2101 902 1706 510 1508 814
14 5638 086 5074 578 4058 706
15 16 768 290 13 656 330 12 100 350
16 44 872 206 40 505 102 32 454 966
17 133 104 294 108 671 358 96 454 890
18 355 506 570 321 657 702 258 097 140
19 1052 388 198 860 905 450 765 164 076
20 2806 489 962 2544 046 834 2043 592 116
21 8294 540 826 6796 085 402 6046 857 690
22 22 091 343 810 20 056 146 286 16 125 110 496
23 65 202 978 942 53 493 772 878 47 639 169 846
24 173 468 654 478 157 688 602 514 126 875 692 236
25 511 412 880 042 420 037 285 362 374 349 488 022
26 1359 302 432 034 1236 987 348 006 995 901 463 296
27 4003 554 217 410 3291 327 878 982 2935 214 709 768
28 10 632 501 183 834 9684 733 628 410 7801 379 718 852

5.4. Lattices with degree 5

There are four ALB lattices with degree 5: the three semi-regular (34.6), (33.42) and (32.4.3.4),
see figures 1 and 4–6, and the weakly regular Bow-tie lattice, with average degree 5, see
figures 3 and 7. To our knowledge, none of these have been studied in connection with
self-avoiding walks before.

5.4.1. The (34.6) lattice. This semi-regular lattice has six vertex classes when computing
bridges; see figure 6.

The matrix G(7, 22), with dimension 10 372, gives the upper bound µ < 3.369 117.
Using irreducible bridges of length N � 24, we get the lower bound µ > 3.206 403.
The values of f (n) for n � 23 are given in table 9. Extrapolation gave the estimate

µ ≈ 3.293.

5.4.2. The (33.42) lattice. This semi-regular lattice has two vertex classes when computing
bridges; see figure 4.

The matrix G(9, 21), with dimension 70 883, gives the upper bound µ < 3.425 364.
Using irreducible bridges of length N � 24, we get the lower bound µ > 3.266 402.
The values of f (n) for n � 23 are given in table 9. Extrapolation gave the estimate

µ ≈ 3.350.
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Table 8. Number of self-avoiding walks on the Dice, D(3.6.3.6), lattice.

n f1(n) f2(n)

1 6 3
2 12 15
3 60 30
4 108 144
5 528 264
6 912 1266
7 4428 2214
8 7512 10 632
9 36 336 18 168

10 61 056 87 276
11 294 588 147 294
12 491 280 706 992
13 2365 104 1182 552
14 3923 232 5672 628
15 18 862 128 9431 064
16 31 159 248 45 213 792
17 149 642 496 74 821 248
18 246 387 456 358 519 356
19 1182 286 308 591 143 154
20 1941 449 952 2831 337 912
21 9309 674 928 4654 837 464
22 15 253 711 488 22 286 434 278
23 73 104 036 204 36 552 018 102
24 119 556 045 792 174 946 751 040
25 572 709 412 368 286 354 706 184
26 935 130 657 696 1370 172 679 248
27 4477 780 172 100 2238 890 086 050
28 7301 340 370 800 10 710 133 253 376
29 34 949 818 263 840 17 474 909 131 920

5.4.3. The (32.4.3.4) lattice. This semi-regular lattice has two vertex classes when computing
bridges; see figure 5 and note the vertical symmetry.

The matrix G(8, 22), with dimension 21 326, gives the upper bound µ < 3.451 433.
Using irreducible bridges of length N � 24, we get the lower bound µ > 3.285 284.
The values of f (n) for n � 23 are given in table 9. Extrapolation gave the estimate

µ ≈ 3.374.

5.4.4. The Bow-tie lattice. This weakly regular lattice has two vertex classes, one with
degree 6 and one with degree 4; see figure 7 and note the vertical symmetry.

The matrix G(8, 22), with dimension 25 571, gives the upper bound µ < 3.525 448.
Using irreducible bridges of length N � 25, we get the lower bound µ > 3.357 574.
The values of f1(n) and f2(n) for n � 23 are given in table 10. Extrapolation gave the

estimate µ ≈ 3.4455.

5.5. Lattices with degree 6

There are four ALB lattices with degree 6, all duals of the degree 3 lattices: the regular
triangular (36) lattice and the three Laves lattices D(4.82),D(4.6.12) and D(3.122). Of these,
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Table 9. Number of self-avoiding walks on the (34.6), (33.42) and (32.4.3.4) lattices.

n (34.6) (33.42) (32.4.3.4)

1 5 5 5
2 20 20 20
3 72 74 74
4 252 266 270
5 874 948 970
6 3016 3344 3440
7 10 372 11 724 12 148
8 35 538 40 850 42 652
9 121 284 141 766 149 100

10 412 242 490 316 519 520
11 1395 976 1691 252 1805 228
12 4713 356 5820 270 6257 724
13 15 882 524 19 991 578 21 649 360
14 53 452 630 68 550 952 74 771 232
15 179 732 292 234 711 768 257 853 108
16 603 784 384 802 581 256 888 050 112
17 2026 136 020 2741 197 536 3054 903 228
18 6791 270 462 9352 835 040 10 497 994 420
19 22 738 287 950 31 881 907 526 36 042 084 224
20 76 060 696 412 108 588 062 224 123 636 733 660
21 254 235 160 722 369 564 222 160 423 792 385 416
22 849 257 603 032 1256 888 408 900 1451 630 772 024
23 2835 303 656 310 4271 966 080 654 4969 151 186 440

Table 10. Number of self-avoiding walks on the Bow-tie lattice.

n f1(n) f2(n)

1 6 4
2 22 20
3 86 72
4 318 272
5 1170 1008
6 4230 3676
7 15 226 13 292
8 54 550 47 732
9 194 738 170 684

10 692 890 608 228
11 2458 174 2161 060
12 8700 818 7658 012
13 30 736 794 27 079 364
14 108 402 594 95 579 160
15 381 754 478 336 830 848
16 1342 664 262 1185 394 144
17 4716 828 182 4166 626 488
18 16 553 404 838 14 629 643 560
19 58 039 661 590 51 316 934 576
20 203 330 098 250 179 848 874 136
21 711 788 064 986 629 812 096 608
22 2490 007 793 146 2203 948 469 260
23 8705 161 472 354 7707 365 570 308
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Table 11. Number of self-avoiding walks on the D(4.82) lattice.

n f1(n) f2(n)

1 8 4
2 40 28
3 200 140
4 960 692
5 4528 3316
6 21 192 15 620
7 98 472 73 028
8 455 424 338 972
9 2097 064 1565 908

10 9622 896 7203 772
11 44 037 032 33 032 636
12 201 060 376 151 072 012
13 916 164 480 689 368 412
14 4167 514 720 3139 701 844
15 18 929 322 048 14 276 075 436
16 85 866 898 520 64 819 327 908
17 389 057 491 544 293 934 346 628
18 1760 975 135 408 1331 399 162 948
19 7963 242 558 008 6024 629 806 972

to our knowledge only the triangular has been studied before in connection with self-avoiding
walks.

5.5.1. The triangular lattice (36). This regular lattice has only one vertex class; see
figure 11.

The matrix G(8, 20), with dimension 18 678, gives the upper bound µ < 4.251 419,
which improves the bound in [1].

Using irreducible bridges, Jensen [9] obtained the lower bound µ > 4.118 935.
In [10], Jensen enumerates self-avoiding walks up to length 40, and uses extrapolation to

estimate µ ≈ 4.150 797.

5.5.2. The dual (4.82) lattice. This weakly regular lattice, also known as the Octagonal
lattice, has two vertex classes, one with degree 8 and one with degree 4; see figure 10.

The matrix G(7, 18), with dimension 25 748, gives the upper bound µ < 4.565 362.
Using irreducible bridges of length N � 20, we get the lower bound µ > 4.304 718.

Note that the lower bound exceeds the upper bound for the triangular lattice.
The values of f1(n) and f2(n) for n � 19 are given in table 11. Extrapolation gave the

estimate µ ≈ 4.442.

5.5.3. The dual (4.6.12) lattice. This weakly regular lattice has three vertex classes, one
with degree 12, one with degree 6 and one with degree 4. When computing bridges we need
to consider four vertex classes; see figure 9 and note the vertical symmetry.

The matrix G(5, 16), with dimension 29 916, gives the upper bound µ < 4.787 227.
Using irreducible bridges of length N � 18, we get the lower bound µ > 4.463 058.
The values of f1(n), f2(n) and f3(n) for n � 18 are given in table 12. Extrapolation gave

the estimate µ ≈ 4.624.
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Table 12. Number of self-avoiding walks on the D(4.6.12) lattice.

n f1(n) f2(n) f3(n)

1 12 6 4
2 48 42 32
3 288 198 160
4 1344 1068 852
5 6828 5196 4232
6 32 892 25 902 21 020
7 159 612 125 874 102 652
8 766 356 609 780 497 720
9 3671 076 2933 562 2397 844

10 17 521 560 14 058 132 11 501 012
11 83 440 932 67 139 772 54 967 576
12 396 541 656 319 822 572 261 998 092
13 1881 162 084 1520 161 374 1245 969 948
14 8909 612 856 7211 880 744 5913 866 044
15 42 136 382 208 34 157 352 042 28 021 308 344
16 199 020 641 232 161 541 458 514 132 570 243 968
17 938 971 412 124 763 007 236 542 626 365 075 348
18 4425 660 916 764 3599 867 690 610 2956 008 677 160

Table 13. Number of self-avoiding walks on the D(3.122) lattice.

n f1(n) f2(n)

1 12 3
2 78 33
3 498 222
4 3030 1410
5 18 102 8 598
6 107 010 51 414
7 627 978 304 032
8 3664 842 1784 232
9 21 292 854 10 411 440

10 123 273 066 60 482 682
11 711 614 178 350 116 536
12 4097 986 746 2020 881 804
13 23 550 744 894 11 636 504 136
14 135 105 470 730 66 867 702 000
15 773 884 996 398 383 573 275 764
16 4426 872 850 098 2196 943 368 528
17 25 293 115 756 146 12 566 359 027 902

5.5.4. The dual (3.122) lattice. This weakly regular lattice, also known as the Asanoha
lattice, has two vertex classes, one with degree 12 and one with degree 3; see figure 8 and note
the vertical symmetry.

The matrix G(5, 15), with dimension 9493, gives the upper bound µ < 5.796 210. This
was improved in [5] to µ < 5.734 24, using a relation with the triangular lattice.

Using irreducible bridges of length N � 17, we get the lower bound µ > 5.377 158.
Note that the lower bound exceeds the upper bound for the D(4.6.12) lattice.

The values of f1(n) and f2(n) for n � 17 are given in table 13. Extrapolation gave the
estimate µ ≈ 5.595.
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6. Discussion

In table 1 we summarize the best upper and lower bounds for, and estimates of, the connective
constants for the ALB lattices. In tables 2–13 we give enumerations for all ALB lattices except
the three regular: square, triangular and hexagonal lattices.

6.1. Partial ordering

Table 1 also gives a partial ordering of the ALB lattices with respect to connective constants,
with horizontal lines indicating a strict ordering relation; graphs above a line have a strictly
higher connective constant than graphs below the line. This notation gives the partial ordering
available at the moment with one exception:

µD(34.6) > µD(Bow-tie).

To get a complete ordering of the ALB lattices with respect to connective constants, there
are 31 remaining relations, out of 210, to decide. Some of these could probably be resolved
with current methods, just using more computing time or memory, but some certainly seem to
require improved methods.

Remark 7. In [17], Parviainen and Wierman give a complete subgraph partial ordering of the
Archimedean and Laves lattices. If G1 is a subgraph of G2, then µG1 � µG2 . Unfortunately,
the subgraph partial order does not add any new relations between the connective constants of
the ALB lattices.

6.2. Average degree

Let q(G) denote the (average) degree of the lattice G. From table 1 we note the following.

Observation 1. If G1 and G2 are ALB lattices, then q(G1) < q(G2) ⇒ µG1 < µG2 .

As the degree q only takes five different values for the 21 ALB lattices, although the
known variation in µ is much larger, it is tempting to try to find a more sensitive measure of
connectivity. In [2], an alternative measure of average degree, q̃, is introduced, defined as the
limit

q̃ = lim
n→∞ gi(n)1/n,

where gi(n) is the number of walks of length n, starting in vertex class i, on the lattice. The
limit is independent of which vertex class the walks start in for all connected graphs. For
regular and semi-regular lattices, q̃ = q, and for weakly regular lattices, q̃ is easily calculated
as an eigenvalue. For all lattices, q̃ � q.

The values of q̃ for the ALB lattices are given in table 1. Note that q̃ takes 12 different
values for the 21 ALB lattices compared to only 5 values for the ordinary average degree, q.
The estimated values of the connective constants support the following conjecture.

Conjecture 1. If G1 and G2 are ALB lattices, then q̃(G1) < q̃(G2) ⇒ µG1 < µG2 .
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Remark 8. From table 1 we see that to prove the conjecture, it remains to show the following
seven relations:

µBow-tie >µ(32.4.3.4),

>µ(33.42),

>µ(34.6),

µD(34.6) >µD(33.42),

>µD(32.4.3.4),

µD(33.42)>µD(32.4.3.4),

>µD(Bow-tie).

Judging from the estimated values, the penultimate inequality is probably hardest to prove,
and it is unlikely that it can be proved with currently available methods, at least with today’s
computers.

6.3. Duality

For critical probabilities, pc, in bond percolation, the following relation holds:

pc(G) + pc(D(G)) = 1.

This in turn implies that

pc(G1) < pc(G2) ⇒ pc(D(G1)) > pc(D(G2)).

The corresponding implication for connective constants holds for all pairs of ALB lattices
with one possible exception: the Kagomé (3.6.3.6) and the Ruby (3.4.6.4) lattices, where the
estimated values indicate that µ(3.6.3.6) < µ(3.4.6.4) and that the same order holds for the duals,
µD(3.6.3.6) < µD(3.4.6.4), although the difference in estimated values is very small (0.002). It
would be interesting to have more reliable estimates for these connective constants.
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