Upper and lower bounds for the connective constants of self-avoiding walks on the Archimedean and Laves lattices

This article has been downloaded from IOPscience. Please scroll down to see the full text article. 2005 J. Phys. A: Math. Gen. 382055
(http://iopscience.iop.org/0305-4470/38/10/001)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 171.66.16.66
The article was downloaded on 02/06/2010 at 20:03

Please note that terms and conditions apply.

Upper and lower bounds for the connective constants of self-avoiding walks on the Archimedean and Laves lattices

Sven Erick Alm
Department of Mathematics, Uppsala University, PO Box 480, SE-751 06 Uppsala, Sweden
E-mail: sea@math.uu.se

Received 14 December 2004, in final form 18 January 2005
Published 23 February 2005
Online at stacks.iop.org/JPhysA/38/2055

Abstract

We give improved upper and lower bounds for the connective constants of self-avoiding walks on a class of lattices, including the Archimedean and Laves lattices. The lower bounds are obtained by using Kesten's method of irreducible bridges, with an appropriate generalization for weakly regular lattices. The upper bounds are obtained as the largest eigenvalue of a certain transfer matrix. The obtained bounds show that, in the studied class of lattices, the connective constant is increasing in the average degree of the lattice. We also discuss an alternative measure of average degree.

PACS numbers: $05.50 .+\mathrm{q}, 05.10 .-\mathrm{a}, 02.10 . \mathrm{Ox}$

1. Introduction

Self-avoiding walks on lattices is a classical combinatorial problem in statistical physics; see [15] for a survey.

In this work we study the connective constants of self-avoiding walks on a class of lattices, the ALB lattices, containing the Archimedean lattices, their duals, the Laves lattices, and the Bow-tie lattice and its dual. We give upper and lower bounds for the connective constants on these lattices, improving previous bounds or providing the first bounds in most cases. Bounds for the hexagonal lattice were treated separately by Alm and Parviainen [3]. Recently, good lower bounds were obtained by Jensen [9] for several lattices. See table 1 for a summary of the best known bounds.

1.1. Self-avoiding walks

A walk of length n on a lattice is an alternating sequence of vertices and edges $\left\{v_{0}, e_{1}, v_{1}, e_{2}, \ldots, e_{n}, v_{n}\right\}$ such that the edge e_{i} connects the vertices v_{i-1} and v_{i}. The walk is self-avoiding if all vertices $v_{0}, v_{1}, \ldots, v_{n}$ are distinct.

Table 1. Summary of lower and upper bounds for the ALB lattices.

Lattice	Degree	\tilde{q}	Lower	Estimate	Upper
$D\left(3.12^{2}\right)$	6	8.20	5.377158	5.595	$5.73424[5]$
$D(4.6 .12)$	6	6.82	4.463058	4.624	4.787227
$D\left(4.8^{2}\right)$	6	6.47	4.304718	4.442	4.565362
$\left(3^{6}\right)$	6	6	$4.118935[9]$	$4.150797[10]$	4.251419
Bow-tie	5	5.12	3.357574	3.4455	3.525448
$\left(3^{2} .4 .3 .4\right)$	5	5	3.285284	3.374	3.451433
$\left(3^{3} .4^{2}\right)$	5	5	3.266402	3.350	3.425364
$\left(3^{4} .6\right)$	5	5	3.206403	3.293	3.369117
$D(3.6 .3 .6)$	4	4.24	2.704239	2.761	2.817739
$D(3.4 .6 .4)$	4	4.24	2.693424	2.763	2.828174
$\left(4^{4}\right)$	4	4	$2.625622[9]$	$2.638159[7]$	$2.679193[18]$
$(3.4 .6 .4)$	4	4	2.511254	2.564	2.610835
$(3.6 .3 .6)$	4	4	$2.548497[9]$	$2.560577[9]$	$2.590305[5]$
$D\left(3^{4} .6\right)$	$10 / 3$	3.54	2.154816	2.193	2.235067
$D\left(3^{3} .4^{2}\right)$	$10 / 3$	3.41	2.112899	2.152	2.186720
$D\left(3^{2} .4 .3 .4\right)$	$10 / 3$	3.37	2.092579	2.132	2.168320
$D($ Bow-tie $)$	$10 / 3$	3.37	2.076706	2.111	2.145304
$\left(6^{3}\right)$	3	3	$1.841925[9]$	$1.847759[16]$	$1.868832[3]$
$\left(4.8^{2}\right)$	3	3	$1.804596[9]$	$1.808830[12]$	1.829254
$(4.6 .12)$	3	3	1.763766	1.7871	1.809064
$\left(3.12^{2}\right)$	3	3	$1.708758[9]$	$1.711041[12]$	$1.719254[3]$

For a vertex-transitive graph, where all vertices are equivalent, let $f(n)$ denote the number of self-avoiding walks, starting at a fixed vertex.

Among general graphs, we will only consider weakly regular graphs with a finite number, K, of vertex classes. Two vertices belong to the same vertex class if they have the same number of self-avoiding walks of all lengths. For these graphs, let $f_{i}(n)$ denote the number of self-avoiding walks, starting at a fixed vertex in vertex class $i, i=1, \ldots, K$.

Hammersley [6] proved that, for a class of lattices called crystals containing all lattices studied in this paper, there exists a constant μ, called the connective constant ${ }^{1}$ of the lattice, such that

$$
\lim _{n \rightarrow \infty} f_{i}^{1 / n}(n)=\mu, \quad \text { for all } \quad i=1, \ldots, K
$$

From the proof of this, it also follows that

$$
\mu \leqslant \max _{1 \leqslant i \leqslant K} f_{i}^{1 / n}(n), \quad \text { for all } n
$$

which is the basis for all upper bounds for connective constants.

[^0]
$\left(3^{4} .6\right)$

$\left(4.8^{2}\right)$

$\left(3^{3} .4^{2}\right)$

($\left.3^{2} .4 .3 .4\right)$

(3.4.6.4)

(4.6.12)

$\left(3.12^{2}\right)$

(3.6.3.6)

$\left(4^{4}\right)$

$\left(3^{6}\right)$

$\left(6^{3}\right)$

Figure 1. The Archimedean lattices.

The connective constant is unknown for all non-trivial lattices, except the hexagonal, where Nienhuis [16] has presented strong evidence that $\mu_{\mathrm{HEX}}=\sqrt{2+\sqrt{2}} \approx 1.847759$. Since Jensen and Guttmann [12] have given a functional relation, (2), between the connective constant of the $\left(3.12^{2}\right)$ lattice, see section 2 for a description of the lattice, and μ_{HEX}, Nienhuis' result also gives the value for $\mu_{\left(3.12^{2}\right)} \approx 1.711041$.

2. The ALB lattices

A regular tiling is a tiling of the plane which consists entirely of regular polygons. A vertextransitive graph of such a regular tiling is called an Archimedean lattice. There are 11 such graphs, shown in figure 1. They are denoted according to a notation given in Grünbaum and Shephard [4].

When the tiling consists of only one type of regular polygon, the corresponding lattice is also edge transitive. Three of the Archimedean lattices are of this type, based on triangles,

$D\left(3^{4} .6\right)$

$D(3.4 .6 .4)$

$D\left(4.8^{2}\right)$

$D\left(3.12^{2}\right)$

$D\left(3^{3} .4^{2}\right)$

$D(4.6 .12)$

$D\left(3^{2} .4 .3 .4\right)$

$D(3.6 .3 .6)$

Figure 2. The Laves lattices.

Bow-tie

D (Bow-tie)

Figure 3. The Bow-tie lattice and its dual.
$\left(3^{6}\right)$, squares, $\left(4^{4}\right)$, or hexagons, $\left(6^{3}\right)$. These lattices are often referred to as regular lattices. The remaining eight Archimedean lattices are semi-regular based on tilings with more than one type of regular polygons.

Whether a lattice is edge transitive or not will be of importance when studying both upper and lower bounds for the connective constants.

The dual of a graph G will be denoted $D(G)$. The square lattice $\left(4^{4}\right)$ is self-dual; the triangular $\left(3^{6}\right)$ and hexagonal $\left(6^{3}\right)$ lattices are each other's duals. The duals of the eight remaining, semi-regular, Archimedean lattices constitute the class of Laves lattices, in which there are more than one vertex class. They are shown in figure 2.

The Laves lattices serve well as test graphs when studying how well average degree explains the connectivity of the lattice, e.g. in terms of connective constants. To get a slightly richer class, we will also include the Bow-tie lattice and its dual, see figure 3, which have similar properties to the Laves lattices.

The class of Archimedean lattices, Laves lattices, the Bow-tie lattice and its dual will be called the ALB lattices. All lattices in this class are weakly regular in the sense that they have a finite number of vertex classes under translation.

3. Lower bounds

In [13], Kesten presents a method of obtaining lower bounds for the connective constant, based on the so-called irreducible bridges. The method was presented for the square lattice (and its higher-dimensional analogues), but works equally well for the triangular lattice and, with a slight modification, also for the hexagonal lattice.

First, in section 3.1, we give a brief description of Kesten's original method and then, in section 3.2, we extend it to the case of weakly regular lattices.

3.1. Kesten's method for regular lattices

Given a fixed embedding of the lattice in the plane, let the coordinates for a vertex v be denoted by $(v(x), v(y))$. A bridge of length n is a self-avoiding walk such that

$$
v_{0}(x)<v_{i}(x) \leqslant v_{n}(x), \quad \text { for } \quad i=1, \ldots, n-1
$$

The idea behind this definition is that joining two bridges always produces a new bridge. Denote the number of bridges of length n by b_{n}, and the generating function for bridges by $\left(b_{0}=1\right)$

$$
B(t)=\sum_{n=0}^{\infty} b_{n} t^{n} .
$$

An irreducible bridge is a bridge that cannot be decomposed into two bridges. Denote the number of irreducible bridges of length n by a_{n}, and the generating function for irreducible bridges by $\left(a_{0}=0\right)$

$$
A(t)=\sum_{n=1}^{\infty} a_{n} t^{n}
$$

As $a_{n} \geqslant 0$ and $b_{n} \geqslant 0$ for all n, both $A(t)$ and $B(t)$ are increasing in $t>0$.
Kesten proved that the connective constants for bridges and irreducible bridges are the same as for self-avoiding walks,

$$
\lim _{n \rightarrow \infty} b_{n}^{1 / n}=\lim _{n \rightarrow \infty} a_{n}^{1 / n}=\lim _{n \rightarrow \infty} f^{1 / n}(n)=\mu
$$

Further, $A(t)$ and $B(t)$ are related by

$$
B(t)=\frac{1}{1-A(t)}
$$

so that the radius of convergence of $B(t)$ is given by

$$
\frac{1}{\mu}=\sup \{t: A(t)<1\}
$$

Thus, $A\left(t_{0}\right)>1$ implies $1 / \mu<t_{0}$, or $\mu>1 / t_{0}$. Further, with

$$
A_{N}(t)=\sum_{n=1}^{N} a_{n} t^{n}
$$

we obviously have $A_{N}(t) \leqslant A(t)$ for all N, so that $A_{N}\left(t_{0}\right)>1$ implies $A\left(t_{0}\right)>1$ and $\mu>1 / t_{0}$, which provides a practical method of obtaining lower bounds for μ.

3.2. A generalization of Kesten's method to weakly regular lattices

Consider a fixed embedding of the lattice in the plane and define bridges and irreducible bridges as above. In order to be able to join two bridges into one longer bridge, we need to keep track of the vertex classes of the starting and ending vertices of the bridges.

Define a bridge of class (i, j) as a bridge that starts in a vertex of class i and ends in a vertex of class j. Then, a bridge of length m of class (i, j) can be joined with a bridge of length n of class (j, k) to form a bridge of length $n+m$ of class (i, k).

Remark 1. The introduction of a coordinate system may have the effect that we have to introduce more vertex classes than above. Two nodes are equivalent if they can be mapped on each other by a translation or by vertical reflection, preserving the lattice. See section 3.3 for more details.

Let $b_{i j}(n)$ be the number of n-step bridges of class (i, j) and $a_{i j}(n)$ be the number of n-step irreducible bridges of class (i, j), for $n \geqslant 1$. Further, let $a_{i j}(0)=0$ for all i and j and

$$
b_{i j}(0)= \begin{cases}1 & \text { if } \quad i=j \\ 0 & \text { if } \quad i \neq j\end{cases}
$$

Then, as every bridge can be partitioned into an irreducible bridge and a bridge (possibly empty),
$b_{i j}(n)=a_{i j}(n)+\sum_{k=1}^{n-1} \sum_{r=1}^{K} a_{i r}(k) \cdot b_{r j}(n-k)=\sum_{k=1}^{n} \sum_{r=1}^{K} a_{i r}(k) \cdot b_{r j}(n-k)$.
Further, introduce the generating functions

$$
B_{i j}(t)=\sum_{n=0}^{\infty} b_{i j}(n) t^{n} \quad \text { and } \quad A_{i j}(t)=\sum_{n=1}^{\infty} a_{i j}(n) t^{n}
$$

Then, by (1)

$$
\begin{aligned}
B_{i j}(t) & =b_{i j}(0)+\sum_{n=1}^{\infty} \sum_{k=1}^{n} \sum_{r=1}^{K} a_{i r}(k) b_{r j}(n-k) t^{n} \\
& =b_{i j}(0)+\sum_{r=1}^{K} \sum_{k=1}^{\infty} a_{i r}(k) t^{k} \sum_{n=k}^{\infty} b_{r j}(n-k) t^{n-k} \\
& =b_{i j}(0)+\sum_{r=1}^{K} A_{i r}(t) B_{r j}(t),
\end{aligned}
$$

so that, with the matrix notation

$$
B(t)=\left(B_{i j}(t)\right)_{K \times K} \quad \text { and } \quad A(t)=\left(A_{i j}(t)\right)_{K \times K},
$$

we have

$$
B(t)=I+A(t) B(t),
$$

or

$$
B(t)=(I-A(t))^{-1}=I+\sum_{k=1}^{\infty} A^{k}(t)
$$

which is well defined as long as the largest eigenvalue, $\lambda_{1}(A(t))$, is less than 1 .

Theorem 1. For a weakly regular lattice,

$$
\mu \geqslant \frac{1}{t_{0}}
$$

where $t_{0}=\sup \left\{t: \lambda_{1}(A(t))<1\right\}$, and $A(t)$ is the matrix generating function for irreducible bridges on the lattice.

For practical computations, we usually use a truncated version, $A_{N}(t)$, of $A(t)$, only considering bridges of length $\leqslant N$. Then, component-wise, $0 \leqslant A_{N}(t) \leqslant A(t)$, for all $t>0$, so that $t_{0}<t_{1}$, where $t_{1}=\sup \left\{t: \lambda_{1}\left(A_{N}(t)\right)<1\right\}$. This gives the following useful result, which will be used to get lower bounds for μ on weakly regular lattices.

Corollary 1. For a weakly regular lattice,

$$
\mu \geqslant \frac{1}{t_{1}}
$$

where $t_{1}=\sup \left\{t: \lambda_{1}\left(A_{N}(t)\right)<1\right\}$, and $A_{N}(t)$ is the truncated matrix generating function for irreducible bridges on the lattice.

Remark 2. It is possible to obtain lower bounds for lattices with multiple vertex classes without using the matrix method described above. Consider the generating function

$$
A_{i i}(t)=\sum_{k=1}^{\infty} a_{i i}(n) t^{n}
$$

and let $t_{i}=\sup \left\{t: A_{i i}(t)<1\right\}$. Then, $\mu \geqslant 1 / t_{i}$, for all i. As above, we can also use truncated versions of the generating functions, but we will get poorer bounds than by using the corollary. As an example, counting irreducible bridges of length at most 4 on the Bow-tie lattice, with two vertex classes, see figure 7, gives

$$
\begin{array}{ll}
A_{11}(t)=4 t^{4}, & A_{12}(t)=2 t \\
A_{21}(t)=2 t+4 t^{2}+4 t^{3}+4 t^{4}, & A_{22}(t)=4 t^{4}
\end{array}
$$

The simplified method gives a lower bound $\mu \geqslant 1 / t$, where $4 t^{4}=1$, i.e. $\mu \geqslant \sqrt{2} \approx 1.4142$, whereas corollary 1 gives $\mu \geqslant 2.9662$.

3.3. Lattice representation

When applying the method, the results may depend on which representation of the lattice is used. In order to simplify the computations, we have chosen to use representations where the nodes all have integer coordinates. The same representation was used in the computations leading to upper bounds, but that method does not depend on which representation we choose.

As an example, the $\left(3^{3} .4^{2}\right)$ lattice, see figure 1 , was represented as in figure 4 (left). When applying Kesten's method we need to treat this semi-regular lattice as having two node classes, marked 1 and 2 in the figure. If we are only interested in the number of self-avoiding walks, all vertices are equivalent. The dual of the $\left(3^{3} .4^{2}\right)$ lattice, figure 4 (right), has three node classes, denoted 1,2 and 3 in the figure, but in practice only two vertex classes because of vertical symmetry.

Representations for the remaining lattices with degree 5: ($3^{2} .4 .3 .4$), ($3^{4} .6$) and Bowtie (with average degree 5), and their duals, all having average degree $10 / 3$, are given in figures 5-7.

The lattices with degree 3: $\left(3.12^{2}\right),(4.6 .12),\left(4.8^{2}\right),\left(6^{3}\right)$, and their duals, all having average degree 6 , are shown in figures $8-11$. Note that the hexagonal lattice $\left(6^{3}\right)$, see

Figure 4. Representation of the $\left(3^{3} .4^{2}\right)$ lattice and its dual.

Figure 5. Representation of the (3^{2}.4.3.4) lattice and its dual.

Figure 6. Representation of the (3^{4}.6) lattice and its dual.
figure 11, although regular, has two vertex classes. Nevertheless, it can be handled with Kesten's original method as all bridges must start (and end) in vertex class 1.

Figure 7. Representation of the Bow-tie lattice and its dual.

Figure 8. Representation of the $\left(3.12^{2}\right)$ lattice and its dual.

Figure 9. Representation of the (4.6.12) lattice and its dual.

There are five lattices with average degree 4 . For the square lattice we use the natural representation. The Kagomé lattice (3.6.3.6) and its dual, also called the Dice lattice, are shown in figure 12. The Ruby lattice (3.4.6.4) and its dual are shown in figure 13.

Figure 10. Representation of the $\left(4.8^{2}\right)$ lattice and its dual.

Figure 11. Representation of the hexagonal, $\left(6^{3}\right)$, lattice and its dual, the triangular lattice, $\left(3^{6}\right)$.

Figure 12. Representation of the (3.6.3.6) lattice and its dual.

Remark 3. We do not claim that the chosen representations are the optimal ones for producing lower bounds. For example, the Kagomé lattice (3.6.3.6) in figure 12 or the (3.12 ${ }^{2}$) lattice of figure 8 can probably be represented in a more effective way, but we have chosen not to investigate this further as there are better lower bounds available for these lattices, [9].

Figure 13. Representation of the (3.4.6.4) lattice and its dual.

Remark 4. When applying corollary 1 , the dimension of the matrix $A_{N}(t)$ may be reduced by removing rows and columns corresponding to vertex classes that cannot be the starting points of bridges, like vertex class 5 in the $D\left(3^{2} .4 .3 .4\right)$ lattice in figure 5 . It is also possible to use vertical symmetry to reduce the dimension. For example, in the $\left(4.8^{2}\right)$ lattice in figure 10 , the vertex classes 1 and 4 , and the vertex classes 2 and 3 , are equivalent, reducing the dimension of the matrix from 4 to 2 . An even more significant reduction is obtained for the (4.6.12) lattice, see figure 9, where vertical symmetry reduces the number of vertex classes from 12 to 6 .

4. Upper bounds

Improved upper bounds are obtained by the method of Alm [1]. Let

$$
F(m)=\sum_{i=1}^{K} f_{i}(m)
$$

be the total number of self-avoiding walks of length m and let $\gamma_{i}(m), i=1, \ldots, F(m)$, denote these walks. Further, let $g_{i j}(m, n)$ be the number of n-stepped self-avoiding walks that start with $\gamma_{i}(m)$ and end with (a translation of) $\gamma_{j}(m)$.

Theorem 2 (Alm 1993). With

$$
\begin{aligned}
& \mathbf{G}(m, n)=\left(g_{i j}(m, n)\right)_{F(m) \times F(m)}, \\
& \mu \leqslant\left(\lambda_{1}(\mathbf{G}(m, n))\right)^{1 /(n-m)},
\end{aligned}
$$

where λ_{1} denotes the largest eigenvalue.
Remark 5. When using this method, available computer memory limits the choice of m, whereas computing time limits n.

Remark 6. It is possible to reduce the order of $\mathbf{G}(m, n)$ by using more symmetry (reflection and rotation). This has, to some extent, been used in the computations.

5. Results

The methods of the previous sections, theorem 2 for upper bounds and corollary 1 for lower bounds, were used to get bounds for all ALB lattices, improving existing bounds for most of the lattices. The computations extend previous enumerations on all lattices, except the square, triangular and hexagonal. Estimated values were obtained using Domb and Sykes' alpha and Neville tables; see [15], which give a precision of three to four decimal places for these series.

In the following subsections we will group the lattices according to their average degree. A summary of the best available bounds is given in table 1.

The results are discussed in more detail in the following section.

5.1. Degree 3 lattices

There are four ALB lattices with degree 3: $\left(3.12^{2}\right),(4.6 .12),\left(4.8^{2}\right)$ and the hexagonal $\left(6^{3}\right)$, all Archimedean; see figures 1 and 8-11.
5.1.1. The (3.12^{2}) lattice. This semi-regular lattice, also known as the Star or extended Kagomé lattice, has six vertex classes when computing lower bounds; see figure 8.

The matrix $G(18,48)$, with dimension 23976 , was computed, giving the upper bound $\mu<1.729220$. This does not improve the bound $\mu<1.719254$ obtained in [3] using a relation between $\mu_{\left(3.12^{2}\right)}$ and μ_{HEX} given by Jensen and Guttmann [12],

$$
\begin{equation*}
\frac{1}{\mu_{\mathrm{HEX}}}=\frac{1}{\mu_{\left(3.12^{2}\right)}}+\frac{1}{\mu_{\left(3.12^{2}\right)}^{3}} \tag{2}
\end{equation*}
$$

This relation was also used by Jensen [9] to obtain the lower bound $\mu>1.708758$ (erroneously given as $\mu>1.708553$ in the paper). Irreducible bridges of length $N \leqslant 53$ only gives $\mu>1.691580$.

The values of $f(n)$ for $n \leqslant 51$ are given in table 2 . This extends the enumeration $(n \leqslant 26)$ given in [5].

Relation (2) and Nienhuis' supposed value for $\mu_{\mathrm{HEX}}=\sqrt{2+\sqrt{2}}$, determines $\mu_{\left(3.12^{2}\right)} \approx$ $1.711041,[12]$.
5.1.2. The (4.6.12) lattice. This semi-regular lattice, sometimes referred to as the Cross lattice, has six vertex classes when computing lower bounds; see figure 9 and note that by vertical symmetry we need only consider vertex classes 1-6.

The matrix $G(18,39)$, with dimension 111702 , gives the bound $\mu<1.809064$.
Using irreducible bridges of length $N \leqslant 48$ gives the lower bound $\mu>1.763766$.
Enumeration of self-avoiding walks up to length 47, see table 2, was used to estimate $\mu \approx 1.7871$. We are not aware of any previously published enumeration of self-avoiding walks on this lattice, nor any bounds for or estimate of the connective constant.
5.1.3. The $\left(4.8^{2}\right)$ lattice. This semi-regular lattice, also known as the Bathroom tiling or Briarwood lattice, has two vertex classes when computing lower bounds; see figure 10 and note that by vertical symmetry we need only consider vertex classes 1 and 2.

The matrix $G(19,42)$, with dimension 125094 , gives the bound $\mu<1.829254$, improving the bound in [1].

Using irreducible bridges of length $N \leqslant 49$ gives the lower bound $\mu>1.785641$. This was recently substantially improved by Jensen [9] to $\mu>1.804596$.

Table 2. Number of self-avoiding walks on the degree 3 lattices.

n	(3.12 ${ }^{2}$)	(4.6.12)	(4.8 ${ }^{2}$)
1	3	3	3
2	6	6	6
3	10	12	12
4	18	22	22
5	32	42	42
6	56	78	80
7	100	146	152
8	176	264	284
9	312	490	536
10	552	894	988
11	976	1646	1848
12	1724	3012	3412
13	3018	5528	6352
14	5240	10086	11724
15	9078	18476	21718
16	15780	33648	39952
17	27502	61472	73808
18	47952	111702	135668
19	83602	203552	250188
20	145700	368872	459172
21	253666	670538	844888
22	440696	1213118	1548608
23	763624	2201208	2845186
24	1321176	3980380	5211548
25	2286260	7214200	9563768
26	3959928	13044916	17501272
27	6861692	23627064	32079524
28	11886772	42714902	58660712
29	20581946	77316682	107425356
30	35619908	139695536	196320596
31	61607416	252664214	359232144
32	106477892	456138008	656099656
33	183923972	824332804	1199676412
34	317633956	1487051098	2189995764
35	548571760	2685425808	4001911076
36	947415036	4841707570	7302060948
37	1635944498	8738393638	13335944432
38	2824074824	15749389392	24322985128
39	4873843408	28411849334	44399312952
40	8409396972	51193846536	80948266996
41	14505967988	92317763708	147696743656
42	25015863884	166297813974	269184560468
43	43131830640	299772356362	490946387696
44	74358090656	539832416602	894489206772
45	128179084208	972751189854	1630785451464
46	220928082152	1751174705274	2970377146028
47	380728998492	3154402628922	5413585017968
48	656014489036		
49	1130187139044		
50	1946827025444		
51	3353058928428		

Computation of $f(n)$ up to length 47, see table 2, extends the previous enumeration $(n \leqslant 29)$ of [1].

The estimate $\mu \approx 1.809$ agrees with the estimate $\mu \approx 1.808830$ given in [12].
5.1.4. The hexagonal lattice. This lattice was treated separately in [3], giving the upper bound $\mu<1.868832$.

The lower bound of that paper, $\mu>1.833009$, was recently improved by Jensen [9] to $\mu>1.841925$.

Enumeration of self-avoiding walks up to length 100 is given by Jensen [11].
The supposed exact value, $\mu=\sqrt{2+\sqrt{2}} \approx 1.847759$, of Nienhuis [16] is supported by all extrapolations.

5.2. Lattices with degree $10 / 3$

There are four ALB lattices with average degree $10 / 3$, all duals of lattices with degree 5 and all having two or three vertex classes: D (Bow-tie), $D\left(3^{2} .4 .3 .4\right), D\left(3^{3} .4^{2}\right)$ and $D\left(3^{4} .6\right)$, see figures 2-7.

To our knowledge, self-avoiding walks on these lattices have not been studied before.
5.2.1. The dual Bow-tie lattice. This lattice has two vertex classes, one with degree 4 and one with degree 3 ; see figure 7 .

The matrix $G(11,33)$, with dimension 18742 , gives the bound $\mu<2.145304$.
Using irreducible bridges of length $N \leqslant 38$ gives the lower bound $\mu>2.076706$.
The values of $f_{1}(n)$ and $f_{2}(n)$ for $n \leqslant 38$ are given in table 3. Extrapolation of these series gave the estimate $\mu \approx 2.111$.
5.2.2. The dual (3^{2}.4.3.4) lattice. This lattice has two vertex classes, one with degree 4 and one with degree 3 ; see figure 5 .

The matrix $G(10,32)$, with dimension 31736 , gives the bound $\mu<2.168320$. Using irreducible bridges of length $N \leqslant 36$ gives the lower bound $\mu>2.092579$.
The values of $f_{1}(n)$ and $f_{2}(n)$ for $n \leqslant 36$ are given in table 4. Extrapolation of these series gave the estimate $\mu \approx 2.132$.
5.2.3. The dual $\left(3^{3} .4^{2}\right)$ lattice. This lattice, also known as the Pentagonal lattice, has two vertex classes, one with degree 4 and one with degree 3 ; see figure 4 .

The matrix $G(11,33)$, with dimension 20743 , gives the bound $\mu<2.186720$.
Using irreducible bridges of length $N \leqslant 36$ gives the lower bound $\mu>2.112899$.
The values of $f_{1}(n)$ and $f_{2}(n)$ for $n \leqslant 36$ are given in table 4. Extrapolation of these series gave the estimate $\mu \approx 2.152$.
5.2.4. The dual $\left(3^{4} .6\right)$ lattice. This lattice has three vertex classes, one with degree 6 and two with degree 3 ; see figure 6 .

The matrix $G(9,30)$, with dimension 29784 , gives the bound $\mu<2.235067$.
Using irreducible bridges of length $N \leqslant 35$ gives the lower bound $\mu>2.154816$.
The values of $f_{1}(n), f_{2}(n)$ and $f_{3}(n)$ for $n \leqslant 34$ are given in table 5 . Extrapolation of these series gave the estimate $\mu \approx 2.155$.

Table 3. Number of self-avoiding walks on the dual Bow-tie lattice.

n	$f_{1}(n)$	$f_{2}(n)$
1	4	3
2	8	8
3	20	18
4	44	40
5	96	92
6	220	200
7	476	452
8	1048	974
9	2296	2156
10	4952	4676
11	10836	10184
12	23368	22034
13	50688	47868
14	109424	103070
15	235944	223300
16	508280	479572
17	1094236	1035398
18	2349948	2221468
19	5052304	4781968
20	10832340	10247458
21	23246096	22018346
22	49790232	47122356
23	106677536	101099276
24	228257516	216139174
25	488498740	463099208
26	1044174832	989246448
27	2232566700	2117080154
28	4768148288	4519080698
29	10186068856	9661885548
30	21739381308	20610366890
31	46405768288	44028642894
32	98978466556	93865037902
33	21144331144	200370472494
34	450092221988	426949915216
35	959595749204	910800515376
36	2044514304536	1939831638482
37	4356629794320	4135796238488
38	9278021270984	8804737338186

5.3. Lattices with degree 4

There are five ALB lattices with degree 4, three Archimedean: the Kagomé (3.6.3.6), the Ruby (3.4.6.4) and the square (4^{4}) lattices, and two Laves lattices: the dual Ruby lattice $D(3.4 .6 .4)$ and the dual Kagomé, or Dice, lattice, $D(3.6 .3 .6)$, see figures $1,2,12,13$. Selfavoiding walks on the square lattice have obtained much attention, and the Kagomé lattice has also been studied, but we are not aware of any previous work on the remaining three lattices.
5.3.1. The Kagomé (3.6.3.6) lattice. This lattice is semi-regular with two vertex classes when computing lower bounds; see figure 12 and note that vertices denoted 1 and 3 are equivalent.

Table 4. Number of self-avoiding walks on the $D\left(3^{2} .4 .3 .4\right)$ and $D\left(3^{3} .4^{2}\right)$ lattices.

n	$D\left(3^{2} .4 .3 .4\right)$		$D\left(3^{3} .4^{2}\right)$	
	$f_{1}(n)$	$f_{2}(n)$	$f_{1}(n)$	$f_{2}(n)$
1	4	3	4	3
2	8	8	10	7
3	20	18	22	18
4	48	42	50	44
5	100	96	114	96
6	232	212	262	218
7	524	478	590	500
8	1124	1064	1302	1114
9	2516	2332	2898	2500
10	5552	5158	6450	5570
11	12068	11350	14254	12298
12	26564	24790	31474	27264
13	58040	54292	69402	60286
14	126212	118616	152730	132712
15	275512	258142	335818	292184
16	599248	562308	737254	642518
17	1300932	1223086	1616318	1410076
18	2826440	2654672	3540838	3092262
19	6129280	5761760	7750150	6774934
20	13278992	12493394	16948422	14826488
21	28764800	27057900	37038042	32424722
22	62244248	58580814	80888886	70863618
23	134605624	126739248	176546146	154753446
24	290981560	273998026	385107986	337755836
25	628605512	592110592	839617690	736776920
26	1357322032	1278871048	1829652318	1606306942
27	2929662720	2760749638	3985289798	3500340982
28	6320447548	5957414590	8677029278	7624366236
29	13630470352	12850090786	18884819642	16600123562
30	29384715412	27706609062	41086175578	36128343180
31	63324897888	59719052078	89357421374	78601218692
32	136423406380	128675134890	194279098870	170946755816
33	293814174776	277164772498	422269358002	371665076262
34	632599393128	596836230624	917548489474	807815755648
35	1361657136640	1284842203420	1993202223970	1755289052740
36	2930188540020	2765216402546	4328750731262	3813002741096

The matrix $G(11,29)$, with dimension 21352 , gives the bound $\mu<2.605069$. This was improved to $\mu<2.590305$ in [5], by using the fact that the Kagomé lattice is the covering lattice of the hexagonal lattice.

Using irreducible bridges of length $N \leqslant 31$ gives the lower bound $\mu>2.509674$. This was improved to $\mu>2.548497$ in [9].

The values of $f(n)$ for $n \leqslant 31$ are given in table 6 . This extends the enumeration in [14] and also corrects an error in their value of $f(28)$. Extrapolation gave the estimate $\mu \approx 2.561$, agreeing with the estimate 2.560577 by Jensen [9].
5.3.2. The Ruby (3.4.6.4) lattice. This lattice is semi-regular with three vertex classes when computing lower bounds; see figure 13 and note that, by vertical symmetry, we need only consider the odd numbered vertices.

Table 5. Number of self-avoiding walks on the $D\left(3^{4} .6\right)$ lattice.

n	$f_{1}(n)$	$f_{2}(n)$	$f_{3}(n)$
1	6	3	3
2	12	9	6
3	24	21	21
4	66	48	51
5	156	117	96
6	336	273	249
7	774	618	621
8	1812	1428	1311
9	4092	3283	2997
10	9078	7420	7107
11	20556	16772	15903
12	46758	37949	35400
13	104226	85556	80508
14	232314	192062	182148
15	523416	430654	406803
16	1171686	966247	909324
17	2606208	2162715	2043768
18	5822382	4830079	4575438
19	13015062	10791648	10192530
20	28972326	24093622	22755822
21	64467552	53698772	50843091
22	143613426	119627969	113223366
23	319518462	266423930	251935404
24	709905276	592793022	561093111
25	1577405796	1318077102	1248305718
26	3504521148	2929772569	2773646481
27	7779397464	6509025111	6162825489
28	17260601976	14453142573	13690705833
29	38293410108	32080257806	30390253506
30	84923674728	71181236128	67428989712
31	188244286188	157879264103	149585647773
32	417163852824	350046010436	331719188994
33	924267479580	775878576160	735287624418
34	2047120032414	1719234908660	1629405631977

The matrix $G(10,28)$, with dimension 17113 , gives the bound $\mu<2.610835$.
Using irreducible bridges of length $N \leqslant 30$ gives the lower bound $\mu>2.511254$.
The values of $f(n)$ for $n \leqslant 30$ are given in table 6. Extrapolation gave the estimate $\mu \approx 2.564$.

To our knowledge, these are the first results on self-avoiding walks for the Ruby lattice.
5.3.3. The square $\left(4^{4}\right)$ lattice. This regular lattice is by far the most studied of the ALB lattices in connection with self-avoiding walks.

The best upper bound, $\mu<2.679$ 193, was given by Pönitz and Tittman [18].
The best lower bound, $\mu>2.625622$, was obtained by Jensen [9], by computing irreducible bridges of length $N \leqslant 72$.

Enumeration up to length 71 was produced by Jensen [8], who in [7] gave the estimate $\mu \approx 2.638159$ based on self-avoiding polygons.

Table 6. Number of self-avoiding walks on the Kagomé (3.6.3.6), and Ruby (3.4.6.4), lattices.

n	Kagomé	Ruby
1	4	4
2	12	12
3	32	34
4	88	94
5	240	252
6	652	680
7	1744	1826
8	4616	4858
9	12208	12928
10	32328	34226
11	85408	90298
12	224640	237710
13	589024	624318
14	1542944	1637370
15	4039256	4289652
16	10560552	11226044
17	27567488	29347138
18	71878068	76636640
19	187262944	199927120
20	487526944	521101204
21	1268269160	1357191780
22	3296832292	3532445834
23	8564411120	9188678794
24	22235825104	23888535986
25	57701041072	62072114752
26	149657337872	161207840658
27	387978891176	418478353298
28	1005378745536	1085857527206
29	2604222063144	2816439313010
30	6743181213712	7302441586124
31	17454178002264	

5.3.4. The dual Ruby lattice $D(3.4 .6 .4)$. This lattice has three vertex classes, one with degree 6 , one with degree 4 and one with degree 3 . When computing lower bounds, we need to consider the four vertex classes $1,2,3$ and 5 of figure 13 .

The matrix $G(7,24)$, with dimension 18876 , gives the bound $\mu<2.828174$.
Using irreducible bridges of length $N \leqslant 28$ gives the lower bound $\mu>2.693424$.
The values of $f_{1}(n), f_{2}(n)$ and $f_{3}(n)$ for $n \leqslant 28$ are given in table 7. Extrapolation of these series gave the estimate $\mu \approx 2.763$.
5.3.5. The Dice lattice $D(3.6 .3 .6)$. This lattice, the dual of the Kagomé lattice, has two vertex classes, one with degree 6 and one with degree 3 . When computing lower bounds, we need only consider the two vertex classes denoted 1 and 2 of figure 12 due to vertical symmetry.

The matrix $G(9,25)$, with dimension 24224 , gives the bound $\mu<2.817739$.
Using irreducible bridges of length $N \leqslant 30$ gives the lower bound $\mu>2.704239$.
The values of $f_{1}(n)$ and $f_{2}(n)$ for $n \leqslant 29$ are given in table 8 . Extrapolation of these series gave the estimate $\mu \approx 2.761$.

Table 7. Number of self-avoiding walks on the dual Ruby, D (3.4.6.4), lattice.

n	$f_{1}(n)$	$f_{2}(n)$	$f_{3}(n)$
1	6	4	3
2	18	14	9
3	54	42	36
4	150	130	102
5	474	370	318
6	1302	1130	882
7	3954	3146	2742
8	10734	9490	7512
9	32370	26006	22824
10	87426	77926	61962
11	261894	211726	186642
12	704454	631614	504030
13	2101902	1706510	1508814
14	5638086	5074578	4058706
15	16768290	13656330	12100350
16	44872206	40505102	32454966
17	133104294	108671358	96454890
18	355506570	321657702	258097140
19	1052388198	860905450	765164076
20	2806489962	2544046834	2043592116
21	8294540826	6796085402	6046857690
22	22091343810	20056146286	16125110496
23	65202978942	53493772878	47639169846
24	173468654478	157688602514	126875692236
25	511412880042	420037285362	374349488022
26	1359302432034	1236987348006	995901463296
27	4003554217410	3291327878982	2935214709768
28	10632501183834	9684733628410	7801379718852

5.4. Lattices with degree 5

There are four ALB lattices with degree 5: the three semi-regular ($3^{4} .6$), ($3^{3} .4^{2}$) and ($3^{2} .4 .3 .4$), see figures 1 and 4-6, and the weakly regular Bow-tie lattice, with average degree 5 , see figures 3 and 7. To our knowledge, none of these have been studied in connection with self-avoiding walks before.
5.4.1. The ($3^{4} .6$) lattice. This semi-regular lattice has six vertex classes when computing bridges; see figure 6 .

The matrix $G(7,22)$, with dimension 10372 , gives the upper bound $\mu<3.369117$.
Using irreducible bridges of length $N \leqslant 24$, we get the lower bound $\mu>3.206403$.
The values of $f(n)$ for $n \leqslant 23$ are given in table 9. Extrapolation gave the estimate $\mu \approx 3.293$.
5.4.2. The $\left(3^{3} .4^{2}\right)$ lattice. This semi-regular lattice has two vertex classes when computing bridges; see figure 4.

The matrix $G(9,21)$, with dimension 70883 , gives the upper bound $\mu<3.425364$.
Using irreducible bridges of length $N \leqslant 24$, we get the lower bound $\mu>3.266402$.
The values of $f(n)$ for $n \leqslant 23$ are given in table 9. Extrapolation gave the estimate $\mu \approx 3.350$.

Table 8. Number of self-avoiding walks on the Dice, D (3.6.3.6), lattice.

n	$f_{1}(n)$	$f_{2}(n)$
1	6	3
2	12	15
3	60	30
4	108	144
5	528	264
6	912	1266
7	4428	2214
8	7512	10632
9	36336	18168
10	61056	87276
11	294588	147294
12	491280	706992
13	2365104	1182552
14	3923232	5672628
15	18862128	9431064
16	31159248	45213792
17	149642496	74821248
18	246387456	358519356
19	1182286308	591143154
20	1941449952	2831337912
21	9309674928	4654837464
22	15253711488	22286434278
23	73104036204	36552018102
24	119556045792	174946751040
25	572709412368	286354706184
26	935130657696	1370172679248
27	4477780172100	2238890086050
28	7301340370800	10710133253376
29	34949818263840	17474909131920

5.4.3. The (3^{2}.4.3.4) lattice. This semi-regular lattice has two vertex classes when computing bridges; see figure 5 and note the vertical symmetry.

The matrix $G(8,22)$, with dimension 21326 , gives the upper bound $\mu<3.451433$.
Using irreducible bridges of length $N \leqslant 24$, we get the lower bound $\mu>3.285284$.
The values of $f(n)$ for $n \leqslant 23$ are given in table 9. Extrapolation gave the estimate $\mu \approx 3.374$.
5.4.4. The Bow-tie lattice. This weakly regular lattice has two vertex classes, one with degree 6 and one with degree 4; see figure 7 and note the vertical symmetry.

The matrix $G(8,22)$, with dimension 25571 , gives the upper bound $\mu<3.525448$.
Using irreducible bridges of length $N \leqslant 25$, we get the lower bound $\mu>3.357574$.
The values of $f_{1}(n)$ and $f_{2}(n)$ for $n \leqslant 23$ are given in table 10. Extrapolation gave the estimate $\mu \approx 3.4455$.

5.5. Lattices with degree 6

There are four ALB lattices with degree 6, all duals of the degree 3 lattices: the regular triangular $\left(3^{6}\right)$ lattice and the three Laves lattices $D\left(4.8^{2}\right), D(4.6 .12)$ and $D\left(3.12^{2}\right)$. Of these,

Table 9. Number of self-avoiding walks on the ($3^{4} .6$), $\left(3^{3} .4^{2}\right)$ and ($3^{2} .4 .3 .4$) lattices.

n	$\left(3^{4} .6\right)$	$\left(3^{3} .4^{2}\right)$	$\left(3^{2} .4 .3 .4\right)$
1	5	5	5
2	20	20	20
3	72	74	74
4	252	266	270
5	874	948	970
6	3016	3344	3440
7	10372	11724	12148
8	35538	40850	42652
9	121284	141766	149100
10	412242	490316	519520
11	1395976	1691252	1805228
12	4713356	5820270	6257724
13	15882524	19991578	21649360
14	53452630	68550952	74771232
15	179732292	234711768	257853108
16	603784384	802581256	888050112
17	2026136020	2741197536	3054903228
18	6791270462	9352835040	10497994420
19	22738287950	31881907526	36042084224
20	76060696412	108588062224	123636733660
21	254235160722	369564222160	423792385416
22	849257603032	1256888408900	1451630772024
23	2835303656310	4271966080654	4969151186440

Table 10. Number of self-avoiding walks on the Bow-tie lattice.

n	$f_{1}(n)$	$f_{2}(n)$
1	6	4
2	22	20
3	86	72
4	318	272
5	1170	1008
6	4230	3676
7	15226	13292
8	54550	47732
9	194738	170684
10	692890	608228
11	2458174	2161060
12	8700818	7658012
13	30736794	27079364
14	108402594	95579160
15	381754478	336830848
16	1342664262	1185394144
17	4716828182	4166626488
18	16553404838	14629643560
19	58039661590	51316934576
20	203330098250	179848874136
21	711788064986	629812096608
22	2490007793146	2203948469260
23	8705161472354	7707365570308

Table 11. Number of self-avoiding walks on the $D\left(4.8^{2}\right)$ lattice.

n	$f_{1}(n)$	$f_{2}(n)$
1	8	4
2	40	28
3	200	140
4	960	692
5	4528	3316
6	21192	15620
7	98472	73028
8	455424	338972
9	2097064	1565908
10	9622896	7203772
11	44037032	33032636
12	201060376	151072012
13	916164480	689368412
14	4167514720	3139701844
15	18929322048	14276075436
16	85866898520	64819327908
17	389057491544	293934346628
18	1760975135408	1331399162948
19	7963242558008	6024629806972

to our knowledge only the triangular has been studied before in connection with self-avoiding walks.
5.5.1. The triangular lattice $\left(3^{6}\right)$. This regular lattice has only one vertex class; see figure 11 .

The matrix $G(8,20)$, with dimension 18678 , gives the upper bound $\mu<4.251419$, which improves the bound in [1].

Using irreducible bridges, Jensen [9] obtained the lower bound $\mu>4.118935$.
In [10], Jensen enumerates self-avoiding walks up to length 40, and uses extrapolation to estimate $\mu \approx 4.150797$.
5.5.2. The dual $\left(4.8^{2}\right)$ lattice. This weakly regular lattice, also known as the Octagonal lattice, has two vertex classes, one with degree 8 and one with degree 4 ; see figure 10 .

The matrix $G(7,18)$, with dimension 25748 , gives the upper bound $\mu<4.565362$.
Using irreducible bridges of length $N \leqslant 20$, we get the lower bound $\mu>4.304718$. Note that the lower bound exceeds the upper bound for the triangular lattice.

The values of $f_{1}(n)$ and $f_{2}(n)$ for $n \leqslant 19$ are given in table 11. Extrapolation gave the estimate $\mu \approx 4.442$.
5.5.3. The dual (4.6.12) lattice. This weakly regular lattice has three vertex classes, one with degree 12 , one with degree 6 and one with degree 4 . When computing bridges we need to consider four vertex classes; see figure 9 and note the vertical symmetry.

The matrix $G(5,16)$, with dimension 29916 , gives the upper bound $\mu<4.787227$.
Using irreducible bridges of length $N \leqslant 18$, we get the lower bound $\mu>4.463058$.
The values of $f_{1}(n), f_{2}(n)$ and $f_{3}(n)$ for $n \leqslant 18$ are given in table 12. Extrapolation gave the estimate $\mu \approx 4.624$.

Table 12. Number of self-avoiding walks on the $D(4.6 .12)$ lattice.

n	$f_{1}(n)$	$f_{2}(n)$	$f_{3}(n)$
1	12	6	4
2	48	42	32
3	288	198	160
4	1344	1068	852
5	6828	5196	4232
6	32892	25902	21020
7	159612	125874	102652
8	766356	609780	497720
9	3671076	2933562	2397844
10	17521560	14058132	11501012
11	83440932	67139772	54967576
12	396541656	319822572	261998092
13	1881162084	1520161374	1245969948
14	8909612856	7211880744	5913866044
15	42136382208	34157352042	28021308344
16	199020641232	161541458514	132570243968
17	938971412124	763007236542	626365075348
18	4425660916764	3599867690610	2956008677160

Table 13. Number of self-avoiding walks on the $D\left(3.12^{2}\right)$ lattice.

n	$f_{1}(n)$	$f_{2}(n)$
1	12	3
2	78	33
3	498	222
4	3030	1410
5	18102	8598
6	107010	51414
7	627978	304032
8	3664842	1784232
9	21292854	10411440
10	123273066	60482682
11	711614178	350116536
12	4097986746	2020881804
13	23550744894	11636504136
14	135105470730	66867702000
15	773884996398	383573275764
16	4426872850098	2196943368528
17	25293115756146	12566359027902

5.5.4. The dual $\left(3.12^{2}\right)$ lattice. This weakly regular lattice, also known as the Asanoha lattice, has two vertex classes, one with degree 12 and one with degree 3 ; see figure 8 and note the vertical symmetry.

The matrix $G(5,15)$, with dimension 9493 , gives the upper bound $\mu<5.796210$. This was improved in [5] to $\mu<5.73424$, using a relation with the triangular lattice.

Using irreducible bridges of length $N \leqslant 17$, we get the lower bound $\mu>5.377158$. Note that the lower bound exceeds the upper bound for the $D(4.6 .12)$ lattice.

The values of $f_{1}(n)$ and $f_{2}(n)$ for $n \leqslant 17$ are given in table 13. Extrapolation gave the estimate $\mu \approx 5.595$.

6. Discussion

In table 1 we summarize the best upper and lower bounds for, and estimates of, the connective constants for the ALB lattices. In tables 2-13 we give enumerations for all ALB lattices except the three regular: square, triangular and hexagonal lattices.

6.1. Partial ordering

Table 1 also gives a partial ordering of the ALB lattices with respect to connective constants, with horizontal lines indicating a strict ordering relation; graphs above a line have a strictly higher connective constant than graphs below the line. This notation gives the partial ordering available at the moment with one exception:

$$
\mu_{D\left(3^{4} .6\right)}>\mu_{D(\text { Bow-tie })}
$$

To get a complete ordering of the ALB lattices with respect to connective constants, there are 31 remaining relations, out of 210 , to decide. Some of these could probably be resolved with current methods, just using more computing time or memory, but some certainly seem to require improved methods.

Remark 7. In [17], Parviainen and Wierman give a complete subgraph partial ordering of the Archimedean and Laves lattices. If G_{1} is a subgraph of G_{2}, then $\mu_{G_{1}} \leqslant \mu_{G_{2}}$. Unfortunately, the subgraph partial order does not add any new relations between the connective constants of the ALB lattices.

6.2. Average degree

Let $q(G)$ denote the (average) degree of the lattice G. From table 1 we note the following.

Observation 1. If G_{1} and G_{2} are ALB lattices, then $q\left(G_{1}\right)<q\left(G_{2}\right) \Rightarrow \mu_{G_{1}}<\mu_{G_{2}}$.

As the degree q only takes five different values for the 21 ALB lattices, although the known variation in μ is much larger, it is tempting to try to find a more sensitive measure of connectivity. In [2], an alternative measure of average degree, \tilde{q}, is introduced, defined as the limit

$$
\tilde{q}=\lim _{n \rightarrow \infty} g_{i}(n)^{1 / n},
$$

where $g_{i}(n)$ is the number of walks of length n, starting in vertex class i, on the lattice. The limit is independent of which vertex class the walks start in for all connected graphs. For regular and semi-regular lattices, $\tilde{q}=q$, and for weakly regular lattices, \tilde{q} is easily calculated as an eigenvalue. For all lattices, $\tilde{q} \geqslant q$.

The values of \tilde{q} for the ALB lattices are given in table 1. Note that \tilde{q} takes 12 different values for the 21 ALB lattices compared to only 5 values for the ordinary average degree, q. The estimated values of the connective constants support the following conjecture.

Conjecture 1. If G_{1} and G_{2} are ALB lattices, then $\tilde{q}\left(G_{1}\right)<\tilde{q}\left(G_{2}\right) \Rightarrow \mu_{G_{1}}<\mu_{G_{2}}$.

Remark 8. From table 1 we see that to prove the conjecture, it remains to show the following seven relations:

$$
\begin{aligned}
\mu_{\text {Bow-tie }} & >\mu_{\left(3^{2} .4 .3 .4\right)} \\
& >\mu_{\left(3^{3} .4^{2}\right)} \\
& >\mu_{\left(3^{4} .6\right)}, \\
\mu_{D\left(3^{4} .6\right)} & >\mu_{D\left(3^{3} .4^{2}\right)}, \\
& >\mu_{D\left(3^{2} .4 .3 .4\right)}, \\
\mu_{D\left(3^{3} .4^{2}\right)} & >\mu_{D\left(3^{2} .4 .3 .4\right)} \\
& >\mu_{D(\text { Bow-tie })}
\end{aligned}
$$

Judging from the estimated values, the penultimate inequality is probably hardest to prove, and it is unlikely that it can be proved with currently available methods, at least with today's computers.

6.3. Duality

For critical probabilities, p_{c}, in bond percolation, the following relation holds:

$$
p_{c}(G)+p_{c}(D(G))=1
$$

This in turn implies that

$$
p_{c}\left(G_{1}\right)<p_{c}\left(G_{2}\right) \quad \Rightarrow \quad p_{c}\left(D\left(G_{1}\right)\right)>p_{c}\left(D\left(G_{2}\right)\right)
$$

The corresponding implication for connective constants holds for all pairs of ALB lattices with one possible exception: the Kagomé (3.6.3.6) and the Ruby (3.4.6.4) lattices, where the estimated values indicate that $\mu_{(3.63 .3)}<\mu_{(3.4 .6 .4)}$ and that the same order holds for the duals, $\mu_{D(3.6 .3 .6)}<\mu_{D(3.4 .6 .4)}$, although the difference in estimated values is very small (0.002). It would be interesting to have more reliable estimates for these connective constants.

Acknowledgments

This work was supported by the Swedish Science Foundation. The author thanks Robert Parviainen for producing figures $1-3$.

References

[1] Alm S E 1993 Upper bounds for the connective constant of self-avoiding walks Combinatorics, Probability and Computing 2 115-36
[2] Alm S E 2003 On measures of average degree for lattices U.U.D.M. Report 2003:6 Department of Mathematics, Uppsala University. Available at:www.math.uu.se/research/pub/Alm2.pdf
[3] Alm S E and Parviainen R 2004 Bounds for the connective constant of the hexagonal lattice J. Phys. A: Math. Gen. 37 549-60
[4] Grünbaum B and Shephard G C 1987 Patterns and Tilings (San Francisco: Freeman)
[5] Guttmann A J, Parviainen R and Rechnitzer A 2004 Self-avoiding walks and trails on the (3.12 ${ }^{2}$) lattice Preprint cond-mat/0410241 v1
[6] Hammersley J M 1957 Percolation processes II. The connective constant Proc. Camb. Phil. Soc. 53 642-5
[7] Jensen I 2003 A parallel algorithm for the enumeration of self-avoiding polygons on the square lattice J. Phys. A: Math. Gen. 36 5731-45
[8] Jensen I 2004 Enumeration of self-avoiding walks on the square lattice J. Phys. A: Math. Gen. 37 5503-24
[9] Jensen I 2004 Improved lower bounds on the connective constants for two-dimensional self-avoiding walks Preprint cond-mat/0409381 v2
[10] Jensen I 2004 Self-avoiding walks and polygons on the triangular lattice Preprint cond-mat/0409039 v2
[11] Jensen I 2004 Self-avoiding walks and polygons on the honeycomb lattice, in preparation
[12] Jensen I and Guttmann A J 1998 Self-avoiding walks, neighbour-avoiding walks and trails on semiregular lattices J. Phys. A: Math. Gen. 31 8137-45
[13] Kesten H 1963 On the number of self-avoiding walks J. Math. Phys. 4 960-9
[14] Lin K Y and Huang J X 1995 Universal amplitude ratios for self-avoiding walks on the Kagomé lattice J. Phys. A: Math. Gen. 28 3641-3
[15] Madras N and Slade G 1993 The Self-Avoiding Walk (Boston, MA: Birkhäuser)
[16] Nienhuis B 1982 Exact critical point and critical exponent of $O(n)$ models in two dimensions Phys. Rev. Lett. 49 1062-5
[17] Parviainen R and Wierman J C 2002 The subgraph partial ordering of Archimedean and Laves lattices U.U.D.M. Report 2002:12 Department of Mathematics Uppsala University. Available at:www.math.uu.se/ research/pub/Parviainen3.pdf
[18] Pönitz A and Tittman P 2000 Improved upper bounds for self-avoiding walks in \mathbb{Z}^{d} Electronic J. Combin. 7 R21

[^0]: 1 To be precise, Hammersley defined the connective constant as $\kappa=\log \mu$.

